KAJIAN RANTAI PASOK MATERIAL DAN PERALATAN KONSTRUKSI DALAM MENDUKUNG INVESTASI DI BIDANG KONSTRUKSI BERLANJUTAN

RINGKASAN EKSEKUTIF

Tahun Anggaran 2013
KATA PENGANTAR

Dengan adanya laporan ini diharapkan dapat teridentifikasi hasil kajian pekerjaan, termasuk konsep konstruksi yang saat ini banyak diterapkan di Indonesia hingga usulan/rekomendasi rencana konsep konstruksi yang berkelanjutan di bidang Pekerjaan Umum.

Atas kerjasama dan bantuan berbagai pihak sehingga terselesaikannya laporan ini, diucapkan terima kasih.

Bandung, November 2013

PUSBIN SDI
DAFTAR ISI

KATA PENGANTAR .. i

DAFTAR ISI .. ii

DAFTAR GAMBAR ... v

DAFTAR TABEL ... vii

BAB 1 PENDAHULUAN

1.1 Latar Belakang .. I – 1
1.2 Maksud dan Tujuan ... I – 2
1.3 Sasaran ... I – 2
1.4 Ruang Lingkup ... I – 3
1.5 Keluaran .. I – 4
1.6 Dasar Hukum ... I – 4

BAB 2 KAJIAN LITERATUR

2.1 Konsep Pengembangan Berkelanjutan ... II – 1
2.1.1 Perkembangan Konsep Konstruksi Berkelanjutan ... II – 1
2.1.2 Beberapa Definisi Konstruksi Berkelanjutan ... II – 4
2.1.3 Konsep Pengembangan Berkelanjutan di Indonesia .. II – 7
2.2 Konsep Konstruksi Hijau ... II – 8
2.3 Konsep Rantai Pasok Hijau .. II – 10
2.3.1 Konsep Rantai Pasok ... II – 10
2.3.2 Konsep Rantai Pasok Konstruksi ... II – 15
2.3.3 Konsep Rantai Pasok Hijau .. II – 18
2.3.4 Kajian Rantai Pasok Hijau ... II – 22
2.4 Material dan Peralatan Konstruksi ... II – 25
2.4.1 Definisi Material dan Peralatan Konstruksi Hijau .. II – 25
2.4.2 Green Label (Eko Label) .. II – 26

BAB 3 METODOLOGI STUDI

3.1 Metodologi Studi .. III - 1
3.2 Program Kerja ... III – 3
3.2.1 Tahap I: Persiapan ... III – 3
3.2.2 Tahap II: Pelaksanaan Survei ... III – 5
3.2.3 Tahap III: Analisa Data .. III – 5
3.2.4 Tahap IV: Finalisasi Studi .. III – 6
3.3 Instrumen Survei ... III – 6
3.4 Kesesuaian instrumen survei dengan sasaran kerangka acuan kerja............ III – 10
3.5 Responden Survei .. III – 14
3.6 Jadual Survei ... III – 18
3.7 Pelaksanaan Survei ... III – 20
 3.7.1 Pelaksanaan Survei di Jakarta dan sekitarnya III – 20
 3.7.2 Pelaksanaan Survei di Denpasar III – 21
 3.7.3 Pelaksanaan Survei di Palembang III – 21
 3.7.4 Pelaksanaan Survei di Balikpapan III – 21
3.8 Hasil Survei .. III – 22
 3.8.1 Industri dan Perusahaan III – 22
 3.8.2 Proyek .. III – 26

BAB 4 DEFINISI MATERIAL DAN PERALATAN KONSTRUKSI BERKELANJUTAN
 4.1. Material Berkelanjutan dan Produk Berkelanjutan IV – 1
 4.2. Peralatan Berkelanjutan IV – 4

BAB 5 DEFINISI MATERIAL DAN PERALATAN KONSTRUKSI BERKELANJUTAN
 5.1. Material Berkelanjutan dan Produk Berkelanjutan V – 1
 5.1.1 Jenis Material Berkelanjutan V – 2
 5.1.2 Material Konstruksi Berkelanjutan Berdasarkan Green Listing V – 2
 5.1.3 Baja sebagai Material Konstruksi Berkelanjutan V – 7
 5.1.4 Semen sebagai Material Konstruksi Berkelanjutan V – 9
 5.2. Peralatan Konstruksi Berkelanjutan V – 10

BAB 6 SUPPLY MATERIAL DAN PERALATAN KONSTRUKSI BERKELANJUTAN
 6.1 Supply Material Berkelanjutan VI – 1
 6.1.1 Material Semen ... VI – 1
 6.1.2 Material Baja ... VI – 8
 6.1.3 Material Aspal ... VI – 14
 6.2 Supply material berkelanjutan III – 3

BAB 7 METODOLOGI STUDI
 7.1 Kesimpulan ... VII – 1
7.2 Usulan Kebijakan

VII - 2
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambar 2.1</td>
<td>Konsep Sustainable Development</td>
<td>II – 2</td>
</tr>
<tr>
<td>Gambar 2.2</td>
<td>Agenda 21 & Agenda 21 on Sustainable Construction</td>
<td>II – 3</td>
</tr>
<tr>
<td>Gambar 2.3</td>
<td>Habitat Agenda & CIB</td>
<td>II – 3</td>
</tr>
<tr>
<td>Gambar 2.4</td>
<td>Konsep Konstruksi Berkelanjutan</td>
<td>II – 5</td>
</tr>
<tr>
<td>Gambar 2.5</td>
<td>Prinsip Keberlanjutan dalam Industri Konstruksi</td>
<td>II – 7</td>
</tr>
<tr>
<td>Gambar 2.6</td>
<td>Draft Agenda 21 for Sustainable Construction in Indonesia</td>
<td>II – 8</td>
</tr>
<tr>
<td>Gambar 2.7</td>
<td>Rantai Pasok Konstruksi</td>
<td>II – 11</td>
</tr>
<tr>
<td>Gambar 2.8</td>
<td>Konseptual supply chain Proyek Konstruksi</td>
<td>II – 14</td>
</tr>
<tr>
<td>Gambar 2.9</td>
<td>Konseptual SCP dalam Industri Konstruksi</td>
<td>II – 16</td>
</tr>
<tr>
<td>Gambar 2.10</td>
<td>Tipologi Organisasi Rantai Pasok</td>
<td>II – 18</td>
</tr>
<tr>
<td>Gambar 2.11</td>
<td>Konsep Supply Chain dalam Green Framework</td>
<td>II – 19</td>
</tr>
<tr>
<td>Gambar 2.12</td>
<td>Framework GSCM</td>
<td>II – 20</td>
</tr>
<tr>
<td>Gambar 2.13</td>
<td>Beberapa Jenis Green Labelling Program</td>
<td>II – 28</td>
</tr>
<tr>
<td>Gambar 3.1</td>
<td>Bagan Alir Pelaksanaan Studi</td>
<td>III – 2</td>
</tr>
<tr>
<td>Gambar 3.2</td>
<td>Kondisi eksisting Rumah Sakit Jiwa Bangli</td>
<td>III – 32</td>
</tr>
<tr>
<td>Gambar 3.3</td>
<td>Kondisi eksisting Hotel Tune Palembang</td>
<td>III – 33</td>
</tr>
<tr>
<td>Gambar 3.4</td>
<td>Kondisi eksisting RSUD Balikpapan</td>
<td>III – 39</td>
</tr>
<tr>
<td>Gambar 3.5</td>
<td>Pemanfatan batu bata sebagai material lokal pada proyek RSUD Balikpapan</td>
<td>III – 40</td>
</tr>
<tr>
<td>Gambar 3.6</td>
<td>Kondisi eksisting proyek Penta City Shopping Venue</td>
<td>III – 41</td>
</tr>
<tr>
<td>Gambar 3.7</td>
<td>Penggunaan material prefabrikasi pada proyek Penta City Shopping Venue</td>
<td>III – 42</td>
</tr>
<tr>
<td>Gambar 3.8</td>
<td>Kondisi eksisting proyek Struktur Promanage</td>
<td>III – 44</td>
</tr>
<tr>
<td>Gambar 3.9</td>
<td>Kondisi eksisting reklamasi pantai Balikpapan</td>
<td>III – 44</td>
</tr>
<tr>
<td>Gambar 3.10</td>
<td>Kondisi eksisting proyek Gedung Parkir Bandara Sepinggan</td>
<td>III – 46</td>
</tr>
<tr>
<td>Gambar 3.11</td>
<td>Penggunaan bekisting baja dan Scaffolding untuk mengurangi penggunaan kayu</td>
<td>III – 47</td>
</tr>
<tr>
<td>Gambar 3.12</td>
<td>Kondisi eksisting proyek Stadion Balikpapan</td>
<td>III – 48</td>
</tr>
<tr>
<td>Gambar 3.13</td>
<td>Penggunaan material prefabrikasi pada proyek Stadion Balikpapan</td>
<td>III – 49</td>
</tr>
<tr>
<td>Gambar 3.14</td>
<td>Lay out lokasi batching plant ready mix pada proyek Stadion Balikpapan</td>
<td>III – 50</td>
</tr>
<tr>
<td>Gambar 4.1</td>
<td>Daur hidup alat berat</td>
<td>IV – 5</td>
</tr>
<tr>
<td>Gambar 6.1</td>
<td>Proses pembuatan semen</td>
<td>VI – 3</td>
</tr>
<tr>
<td>Gambar 6.2</td>
<td>Lokasi pembuatan semen di Indonesia</td>
<td>VI – 5</td>
</tr>
<tr>
<td>Gambar 6.3</td>
<td>Structure Channel Rantai Pasok Semen</td>
<td>VI – 7</td>
</tr>
<tr>
<td>Gambar 6.4</td>
<td>Structure Channel Rantai Pasok Semen</td>
<td>VI – 8</td>
</tr>
<tr>
<td>Gambar 6.5</td>
<td>Diagram Alir Pengolahan Baja</td>
<td>VI – 11</td>
</tr>
<tr>
<td>Gambar 6.7</td>
<td>Peta sebaran komoditas baja konstruksi nasional</td>
<td>VI – 14</td>
</tr>
<tr>
<td>Gambar 6.8</td>
<td>Peta Sebaran Pasokan Baja Konstruksi Nasional</td>
<td>VI – 15</td>
</tr>
<tr>
<td>Gambar 6.9</td>
<td>Proses Pembuatan Aspal Minyak</td>
<td>VI – 17</td>
</tr>
<tr>
<td>Gambar 6.10</td>
<td>Peta Sebaran Pasokan Aspal Nasional</td>
<td>VI – 20</td>
</tr>
<tr>
<td>Gambar 6.11</td>
<td>Rantai Pasok Alat Berat</td>
<td>VI – 21</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 2.1</td>
<td>Perbedaan Antara Rantai Pasok Tradisional dan Rantai Pasok Hijau</td>
<td>II – 22</td>
</tr>
<tr>
<td>Tabel 2.2</td>
<td>Kategori Praktek GSCM pada Level Perusahaan</td>
<td>II – 23</td>
</tr>
<tr>
<td>Tabel 3.1</td>
<td>Kesesuaian instrumen survei pada industri dengan sasaran kerangka acuan kerja</td>
<td>III – 11</td>
</tr>
<tr>
<td>Tabel 3.2</td>
<td>Kesesuaian instrumen survei pada perusahaan dengan sasaran kerangka acuan kerja</td>
<td>III – 12</td>
</tr>
<tr>
<td>Tabel 3.3</td>
<td>Kesesuaian instrumen survei pada proyek dengan sasaran kerangka acuan kerja</td>
<td>III – 13</td>
</tr>
<tr>
<td>Tabel 3.4</td>
<td>Daftar responden rantai pasok material dan peralatan konstruksi</td>
<td>III – 14</td>
</tr>
<tr>
<td>Tabel 3.5</td>
<td>Daftar supplier material hijau berdasarkan green listing</td>
<td>III – 15</td>
</tr>
<tr>
<td>Tabel 3.6</td>
<td>Jadual pelaksanaan survei</td>
<td>III – 19</td>
</tr>
<tr>
<td>Tabel 3.7</td>
<td>Ringkasan hasil survei pada kategori industri dan perusahaan</td>
<td>III – 52</td>
</tr>
<tr>
<td>Tabel 3.8</td>
<td>Ringkasan hasil survei pada kategori proyek di Denpasar</td>
<td>III – 53</td>
</tr>
<tr>
<td>Tabel 3.9</td>
<td>Ringkasan hasil survei pada kategori proyek di Palembang</td>
<td>III – 56</td>
</tr>
<tr>
<td>Tabel 3.10</td>
<td>Ringkasan hasil survei pada kategori proyek di Balikpapan</td>
<td>III – 58</td>
</tr>
<tr>
<td>Tabel 4.1</td>
<td>Jumlah sertifikat ekolabel yang telah diterbitkan</td>
<td>IV – 2</td>
</tr>
<tr>
<td>Tabel 5.1</td>
<td>Daftar supplier material hijau berdasarkan green listing</td>
<td>V – 4</td>
</tr>
<tr>
<td>Tabel 5.2</td>
<td>Potensi material berkelanjutan berdasarkan Green Listing</td>
<td>V – 7</td>
</tr>
<tr>
<td>Tabel 5.3</td>
<td>Konsumsi Baja di Negara Asia dan Australia Tahun 2008</td>
<td>V – 8</td>
</tr>
<tr>
<td>Tabel 5.4</td>
<td>Potensi baja sebagai material berkelanjutan</td>
<td>V – 9</td>
</tr>
<tr>
<td>Tabel 5.5</td>
<td>Potensi semen sebagai material berkelanjutan</td>
<td>V – 10</td>
</tr>
<tr>
<td>Tabel 5.6</td>
<td>Potensi alat berat sebagai pendukung konstruksi berkelanjutan</td>
<td>V – 11</td>
</tr>
<tr>
<td>Tabel 6.1</td>
<td>Kapasitas Produksi Produsen Semen Indonesia 2012</td>
<td>VI – 4</td>
</tr>
<tr>
<td>Tabel 6.2</td>
<td>Kapasitas Produksi dan Jumlah Produksi Semen Indonesia 2012</td>
<td>VI – 6</td>
</tr>
<tr>
<td>Tabel 6.3</td>
<td>Kapasitas Produksi Baja Indonesia 2012</td>
<td>VI – 15</td>
</tr>
<tr>
<td>Tabel 6.4</td>
<td>Pasokan dan Konsumsi Aspal Indonesia 2012</td>
<td>VI – 19</td>
</tr>
<tr>
<td>Tabel 6.5</td>
<td>Supply dan demand peralatan konstruksi di Indonesia</td>
<td>VI – 21</td>
</tr>
</tbody>
</table>
1.1. Latar Belakang

Saat ini Indonesia termasuk dalam negara yang paling progresif dalam penyelenggaraan konstruksi di dunia, sehingga menjadi pasar konstruksi yang besar dan diperhitungkan di dunia. Hal ini terjadi karena Indonesia merupakan negara yang memiliki wilayah sangat luas, kondisi geografis dan bentang alam yang bervariasi, jumlah penduduknya termasuk kelompok negara berpenduduk tertinggi di dunia, tingkat pertumbuhan wilayah perkotaan yang tinggi. Dengan kondisi tersebut, produk konstruksi di Indonesia sangat bervariasi dari tingkat yang hanya memerlukan teknologi sederhana sampai dengan teknologi ultra tinggi.

Dalam penyelenggaraan infrastruktur dewasa ini, aspek penting yang juga menjadi focus perhatian selain aspek ekonomi, social dan budaya adalah aspek lingkungan. Aspek lingkungan saat ini sudah menjadi suatu prasyarat dalam setiap pelaksanaan kegiatan pembangunan infrastruktur. Dalam hal ini sektor konstruksi dituntut agar dapat berkontribusi mengurangi limbah/ sampah (waste) hasil produk konstruksi, hingga kepada penerapan konsep hijau (Green Concept). Green Concept lahir dari sebuah kesadaran atau refleksi diri manusia dalam rangka memperpanjang usia kehidupan (peradaban) manusia di bumi untuk keberlangsungan generasi selanjutnya.

Sejauk isu pemanasan global (global warming) marak di awal dasawarsa 1990-an, kesadaran kolektif global semakin terlembaga dengan baik, dengan lahirnya berbagai kebijakan pro-lingkungan baik di tingkat international, nasional, bahkan local. Isu-isu yang berkaitan dengan keselamatan lingkungan banyak digaungkan di berbagai sektor termasuk sektor konstruksi.
Di sektor konstruksi, pemahaman akan pentingnya keselamatan lingkungan juga semakin meningkat melalui implementasi pembangunan infrastruktur hijau atau yang lebih dikenal sebagai konstruksi berkelanjutan (sustainable construction). Penerapan konstruksi berkelanjutan diadopsi hampir diseluruh proses pelaksanaan konstruksi, mulai dari perencanaan, perancangan, konstruksi, operasi dan pemeliharaan hingga dekonstruksi. Selain itu komitmen akan pentingnya keselamatan lingkungan hidup dalam setiap proses pelaksanaan konstruksi juga semakin meningkat termasuk kesadaran akan pentingnya penggunaan material dan peralatan konstruksi (MPK) yang tidak merusak alam mulai dari proses penggunaan bahan baku, pembuatan, distribusi hingga pelaksanaan di lapangan. Berkaitan dengan itu, pemilihan MPK yang ramah lingkungan menjadi langkah kunci yang dilakukan untuk menciptakan konstruksi berkelanjutan.

Oleh karena itu, dunia jasa konstruksi di Indonesia terdorong ke situasi yang tak terelakkan untuk menerapkan konstruksi berkelanjutan melalui implementasi infrastruktur hijau. Para pelaku bisnis yang berkaitan dengan dunia jasa konstruksi mau tidak mau juga harus mempertimbangkan hal ini karena adanya permintaan pasar yang telah banyak berkomitmen pada penerapan konstruksi berkelanjutan. Dengan demikian agar pembangunan di Indonesia dapat berjalan dengan efektif, efisien, dan lancar dengan tanpa mengacuhkan kelestarian lingkungan, maka perlu dilakukan kajian terhadap rantai pasok material dan peralatan konstruksi dalam mendukung investasi di bidang konstruksi berkelanjutan.

1.2. Maksud dan Tujuan

Maksud dari kegiatan ini adalah untuk mengkaji rantai pasok material dan peralatan konstruksi dalam mendukung investasi di bidang konstruksi berkelanjutan. Tujuan dari kegiatan kajian ini adalah untuk merumuskan rekomendasi terhadap penggunaan material dan peralatan konstruksi khusus dalam pelaksanaan konstruksi berkelanjutan dalam rangka meningkatkan efisiensi dan efektifitas penyelenggaraan konstruksi.

1.3. Sasaran

Adapun yang menjadi sasaran pelaksanaan dalam paket pekerjaan ini adalah sebagai berikut:

a. Definisi material dan peralatan di bidang konstruksi berkelanjutan;
b. Kriteria material dan peralatan di bidang konstruksi berkelanjutan;
c. Identifikasi potensi material dan peralatan bidang konstruksi berkelanjutan dalam negeri;
d. Pemetaan rantai pasok material dan peralatan bidang konstruksi berkelanjutan dalam negeri;
e. Keseimbangan rantai pasok material dan peralatan di bidang konstruksi berkelanjutan dalam mendukung investasi konstruksi di lingkup Pekerjaan Umum;
f. Rumusan kebijakan nasional dalam pengelolaan material dan peralatan bidang konstruksi berkelanjutan dalam mendukung investasi infrastruktur Pekerjaan Umum.

1.4. Ruang Lingkup

Adapun yang menjadi lingkupan dalam pekerjaan ini adalah sebagai berikut:

a. Penemu-kenalan para pemangku kepentingan baik personal maupun kelembagaan yang terkait dengan material dan peralatan bidang konstruksi berkelanjutan;
b. Pelaksanaan brainstorming, konsinyasi, seminar/ lokakarya dengan para pemangku kepentingan untuk membahas berbagai topic terkait dalam rangka mencapai maksud, tujuan dan sasaran paket pekerjaan ini;
c. Perumusan logical framework/ kerangka berpikir yang terkait dengan prinsip dasar, metodologi, dan arah capaian (goals) dari rantai pasok material dan peralatan bidang konstruksi berkelanjutan yang kemudian disusun dalam bentuk matrix need analysis;
d. Perumusan definisi dan kriteria material dan peralatan bidang konstruksi berkelanjutan;
e. Penemu-kenalan potensi material dan peralatan bidang konstruksi berkelanjutan dalam negeri;
f. Pemetaan rantai pasok potensi material dan peralatan bidang konstruksi berkelanjutan dalam negeri;
g. Perumusan keseimbangan rantai pasok potensi material dan peralatan bidang konstruksi berkelanjutan dalam negeri;
h. Perumusan rekomendasi rencana tindak kebijakan nasional dalam pengelolaan potensi material dan peralatan bidang konstruksi berkelanjutan dalam negeri;
i. Melaksanakan sekurang-kurangnya 1 (satu) kali Focus Group Discussion (FGD);

j. Melaksanakan sekurang-kurangnya 1 (satu) kali workshop.

1.5. Keluaran

Keluaran dari pekerjaan ini adalah rekomendasi terhadap penggunaan material dan peralatan konstruksi khusus dalam pelaksanaan konstruksi berkelanjutan dalam rangka meningkatkan efisiensi dan efektifitas penyelenggaraan konstruksi.

Laporan pekerjaan ini antara lain:

a. Laporan Pendahuluan;

b. Laporan Antara;

c. Draf Laporan Akhir;

d. Laporan Akhir;

e. Ringkasan Eksekutif.

1.6. Dasar Hukum

Dasar hukum dari pekerjaan ini adalah:

a. UU No. 5 tahun 1984, tentang Perindustrian;

b. UU No. 18 tahun 1999, tentang Jasa Konstruksi;

c. UU No. 28 tahun 2002, tentang Bangunan Gedung;

d. UU No. 38 tahun 2004, tentang Jalan;

e. UU No. 7 tahun 2004, tentang Sumber Daya Air;

f. UU No. 26 tahun 2007, tentang Penataan Ruang;

g. UU No. 32 tahun 2009, tentang Perlindungan dan Pengelolaan Lingkungan Hidup;

h. PP No. 28 tahun 2000, Jo PP No. 4 tahun 2010, Jo PP No. 92 tahun 2010, tentang Usaha dan Peran Masyarakat Jasa Konstruksi serta perubahannya;

i. PP No. 29 tahun 2000, Jo PP No. 50 tahun 2010, tentang Penyelenggaraan Pembinaan Jasa Konstruksi;

j. PP No. 30 tahun 2000, tentang Penyelenggaraan Pembinaan Jasa Konstruksi;

3.1. Konsep Pengembangan Berkelanjutan

3.1.1. Perkembangan Konsep Konstruksi Berkelanjutan

Hal tersebut berarti kita berusaha untuk mencapai tujuan ekonomi, social, dan lingkungan disaat yang bersamaan. Sustainable development memungkinkan kita untuk memiliki suatu lingkungan sosial yang di dalamnya terdapat peningkatan kesejahteraan ekonomi dengan lingkungan yang sedikit polusi dan penggunaan sumberdaya alam yang lebih efisien. Dasar pertimbangan dari sustainable development adalah etika hidup.
Negara-negara berkembang, berhasil memasukkan hal-hal penting bagi kepentingan mereka di dalam kesepakatan yang tertuang di dalam prinsip-prinsip “Deklarasi Stockholm”, “Deklarasi Rio de Janeiro” dan Agenda 21. Hal-hal penting tersebut antara lain keterkaitan erat antara pembangunan dengan perlindungan lingkungan hidup, komitmen negara maju untuk meningkatkan kerjasama internasional melalui program peningkatan pembangunan di negara-negara berkembang, penyaluran dana bantuan dan alih teknologi dari negara-negara maju termasuk peningkatan stabilitas harga komoditas, komitmen negara maju untuk menyediakan bantuan luar negeri sebesar 0,7% dari Produk Domestik Bruto (PDB).

Agenda 21 on Sustainable Construction (Gambar 2.2) yang dikeluarkan oleh CIB pada Tahun 1999 tersebut berlaku secara umum untuk negara-negara di seluruh dunia. Namun, penerapan sustainable construction untuk negara-negara yang sedang
berkembang ternyata diperlukan pendekatan yang berbeda. Hal ini terkait dengan prioritas pembangunan, kemampuan kerja industri lokal dan pemerintahannya, serta tingkat kemampuan dan keahlian berbagai sektor dari negara-negara berkembang, yang umumnya memiliki variasi yang sangat tinggi, mulai dari tingkat yang rendah hingga tinggi.

Hal inilah yang menyebabkan diterbitkannya suatu dokumen hasil diskusi yang berjudul *Agenda 21 for Sustainable Construction in Developing Countries*, yang merupakan bagian dari rencana aksi *Agenda 21 on Sustainable Construction* pada tahun 2002.

3.1.2. Beberapa Definisi Konstruksi Berkelanjutan

Konstruksi berkelanjutan merupakan suatu bentuk pemahaman baru yang muncul di kalangan praktisi industri teknik sipil pada akhir abad ke 20. Konsep tersebut dikembangkan sebagai bagian dari konsep pengembangan berkelanjutan (*sustainable development*) yang bertujuan untuk memenuhi kebutuhan saat ini tanpa mengurangi kemampuan generasi mendatang untuk memenuhi kebutuhan mereka. Konsep konstruksi berkelanjutan ini memiliki pengertian yang cukup beragam dari satu institusi ke institusi yang lain. Salah satu definisi mengenai konstruksi berkelanjutan yang cukup baik menyatakan konstruksi berkelanjutan sebagai suatu kegiatan menciptakan dan mengoperasikan lingkungan terbangun (*built environment*) yang sehat didasarkan atas prinsip efisiensi sumber daya dan desain ekologi, serta mengikuti tujuh (7) prinsip konstruksi berkelanjutan yang harus dipenuhi dalam setiap fase kegiatan desain dan konstruksi yang berlanjut selama keseluruhan siklus hidup bangunan tersebut (Kibert, 2008).

Ketujuh prinsip konstruksi berkelanjutan tersebut antara lain adalah,

- Mengurangi konsumsi sumber daya (*reduce*)
- Penggunaan kembali sumber daya (*reuse*)
- Menggunakan sumber daya yang terdaur ulang (*recycle*)
- Melindungi lingkungan (*protect nature*)
- Menghilangkan racun (*eliminate toxics*)
- Menerapkan konsep biaya siklus hidup (*life cycle costing*)
- Fokus kepada kualitas (*focus on quality*)
Ketujuh prinsip konstruksi berkelanjutan dari Kibert tersebut harus dilaksanakan secara integratif pada setiap tahapan dari suatu proyek sebagaimana digambarkan dalam gambar 2.4.

Gambar 2.4 Konsep Konstruksi Berkelanjutan

Konstruksi berkelanjutan juga dapat didefinisikan sebagai suatu konsep yang ditawarkan oleh pelaku di dalam industri konstruksi untuk menjawab tantangan akan kebutuhan pengembangan yang berkelanjutan (Huovila & Koskela, 2007). Disamping definisi tersebut, konstruksi berkelanjutan juga dapat didefinisikan sebagai suatu komitmen dari industri konstruksi untuk mencapai tiga pilar tujuan/ objektif utama yaitu (*Constructing Excellence*, 2004),

- Ekonomi, yaitu meningkatkan keuntungan (*profitability*) dengan menggunakan sumber daya seperti tenaga kerja, material, energi, dan air secara lebih efisien.
- Lingkungan hidup, yaitu melindungi lingkungan hidup dari dampak emisi dan limbah, serta mempergunakan sumber daya yang ada secara hati–hati.
- Sosial, yaitu mengidentifikasi kebutuhan/ dampak dari proses konstruksi bagi semua pihak yang terlibat/ terkena dampak dimulai dari munculnya ide suatu proyek hingga penghancuran (*demolition*), seperti pekerja konstruksi, pengguna, dan masyarakat sekitar proyek.

Definisi lain yang dapat ditawarkan mengenai parameter–parameter yang harus dilaksanakan untuk mencapai suatu kondisi konstruksi berkelanjutan adalah melakukan desain bagi perubahan, melakukan desain untuk menimimumkan sampah (*waste*),...
menerapkan konsep konstruksi ramping (*lean construction*), meminimalkan energi baik pada proses konstruksi dan kegiatan operasional dan pemeliharaan bangunan, tidak mencemari lingkungan, mempertahankan dan menjaga keanekaragaman hayati (*biodiversity*), melakukan konservasi terhadap sumber daya air, menghargai masyarakat dan budaya lokal, serta melakukan kegiatan monitoring dan pelaporan (Corus, 2006).

Definisi mengenai konstruksi berkelanjutan yang hampir serupa ditawarkan oleh Abidin, 2009 yang menyatakan definisi mengenai konstruksi berkelanjutan di negara sedang berkembang terdiri dari 3 pilar utama yaitu, lingkungan hidup, ekonomi, dan sosial, sebagaimana dapat dilihat pada gambar 2.5.

Berdasarkan hal tersebut, definisi dan parameter mengenai konstruksi berkelanjutan dapat diturunkan dari beberapa standar bangunan hijau (*green building*) sebagaimana yang diterapkan di beberapa negara mengingat bangunan hijau merupakan hasil (*output*) yang logis dari implementasi konstruksi berkelanjutan, sehingga definisi dan parameter konstruksi berkelanjutan dapat diidentifikasi dari standar bangunan hijau (*green building*) terutama pada parameter yang masuk kedalam lingkup pelaksanaan/ ranah perusahaan kontraktor.

Definisi lain dari konsep konstruksi berkelanjutan melihat bahwa konstruksi berkelanjutan, meskipun sama-sama berdiri pada tiga pilar tujuan utama yaitu ekonomi, lingkungan hidup, dan sosial, memiliki perbedaan prioritas dari tujuan tersebut pada negara maju apabila dibandingkan dengan negara sedang berkembang (Ofori, 1998).

Tingkat penggunaan energi per kapita di negara sedang berkembang yang lebih rendah, sekitar 1/9 hingga 1/20 kali, dibandingkan dengan tingkat penggunaan energi di negara
maju, biaya material yang lebih tinggi di negara sedang berkembang yang menyebabkan usia pakai material dan juga tingkat daur ulang material menjadi tinggi, serta biaya tenaga kerja yang lebih rendah menyebabkan prioritas utama dari konsep konstruksi berkelanjutan di negara sedang berkembang dititikberatkan kepada faktor ekonomi apabila dibandingkan dengan negara maju yang menitikberatkan pencapaian konstruksi berkelanjutan pada faktor lingkungan hidup.

3.1.3. Konsep Pengembangan Berkelanjutan di Indonesia

Indonesia sebagai negara yang sedang berkembang dan sedang membangun, telah memiliki cetak biru bagi sektor konstruksi sebagai grand design dan grand strategy yang disebut dengan Konstruksi Indonesia 2030. Dalam dokumen tersebut dinyatakan bahwa konstruksi Indonesia mesti berorientasi untuk tidak menyumbangkan terhadap kerusakan lingkungan namun justru menjadi pelopor perbaikan dan peningkatan kualitas lingkungan seluruh habitat persada Indonesia, yang didiami oleh manusia dan seluruh makluk lainnya secara bersimbiosis mutualisme. Salah satu agenda yang diusulkan adalah melakukan promosi sustainable construction untuk penghematan bahan dan pengurangan limbah (bahan sisa) serta kemudahan pemeliharaan bangunan pasca konstruksi (Suraji, 2007).

Dalam Draft Agenda 21 Konstruksi Berkelanjutan Indonesia sebagai rujukan pengembangan Agenda Konstruksi Indonesia 2030, terdapat tiga pengelompokan agenda

Sumber: Abidin, 2009

Gambar 2.5 Prinsip Keberlanjutan dalam Industri Konstruksi

Sumber: Draft Agenda 21 Konstruksi Berkelanjutan Indonesia
Gambar 2.6 Draft Agenda 21 for Sustainable Construction in Indonesia

3.2. Konsep Konstruksi Hijau

Aspek pertama dalam sustainable construction adalah penghematan bahan yang digunakan dalam pembangunan. Secara global, industri konstruksi merupakan salah satu pengguna sumberdaya alam yang terbesar. Industri ini mengkonsumsi sebesar 50% sumberdaya alam, 40% energy dunia, dan 16% air (Widjanarko, 2009). Frick dan Suskriyanto (2007) menyatakan bahwa penggunaan sumberdaya tak terbarukan, proses pengolahan bahan mentah menjadi bahan siap pakai, eksploitasi dari konsumsi yang berlebihan, dan masalah transportasi adalah kontributor dampak lingkungan.

Aspek kedua dalam sustainable construction adalah pengurangan limbah. Anink (1996) menyebutkan bahwa sektor konstruksi yang terdiri dari tahap ekstraksi material, pengangkutan material ke lokasi proyek konstruksi, proses konstruksi, operasional gedung, pemeliharaan gedung sampai tahap pembongkaran gedung mengkonsumsi 50% dari seluruh pengambilan material alam dan mengeluarkan limbah sebesar 50% dari seluruh limbah.
Salah satu penyebab tingginya jumlah limbah dalam konstruksi adalah karakteristik industri ini dalam menggunakan sumberdaya alam yang melebihi dari apa yang diperlukan untuk proses konstruksi. Meskipun limbah konstruksi tidak seberbahaya limbah dari industri lainnya, limbah konstruksi tetap akan menurunkan kualitas dari lingkungan hidup, oleh karena itu sudah seharusnya dilakukan minimalisasi pengaruhnya terhadap lingkungan.

United State Environmental Protection Agency mendefinisikan green construction merupakan praktik membangun dengan menerapkan proses yang memperhatikan lingkungan dan efisiensi sumber daya sepanjang siklus hidup bangunan dari tapak untuk perencanaan, konstruksi, operasi, pemeliharaan, renovasi, dan dekonstruksi.

Upaya penerapan green construction di Indonesia sudah dilakukan, antara lain oleh kontraktor nasional P.T. Pembangunan Perumahan (PP). Instrumen yang digunakan untuk menilai green construction disebut dengan Green Contractor Assessment Sheet yang mencakup hal-hal sebagai berikut:

- tepat guna lahan,
- efisiensi dan konservasi energi,
- konservasi air,
- manajemen lingkungan proyek konstruksi,
- sumber dan siklus material,
- kesehatan dan kenyamanan di dalam lokasi proyek konstruksi.
Untuk lingkup nasional, perangkat penilaian bangunan hijau di Indonesia untuk gedung baru digunakan Sistem Rating GREENSHIP Versi 1.0. Bila dikaji lebih lanjut, proporsi penilaian yang didasarkan item penilaian lebih dominan terjadi pada tahap perencanaan (62,2%) dan tahap pengoperasian (33,3%) bila dibandingkan dengan proses konstruksi (4,5%).

3.3. Konsep Rantai Pasok Hijau

3.3.1. Konsep Rantai Pasok

Supply chain atau rantai pasok merupakan suatu konsep yang relatif baru di dunia konstruksi, yang awal perkembangannya berasal dari industri manufaktur. Konsep *supply chain* berhubungan erat dengan lahirnya konsep *lean production* yang berakar pada pemikiran *lean thinking* yang telah merubah paradigma produksi dalam industri manufaktur.

Tuntutan terhadap efisiensi memaksakan perusahaan untuk membentuk struktur organisasi yang lebih sederhana, mendorong perusahaan untuk lebih fokus pada bisnis intinya, dan menyerahkan aktifitas pendukungnya pada pihak lain. Perkembangan ini mengakibatkan produk atau jasa yang dihasilkan oleh suatu bisnis, bukan lagi merupakan output dari satu organisasi secara individu, namun merupakan output dari suatu rangkaian organisasi, yang disebut *supply chain* (Maylor, 2003).

Dijelaskan oleh Hanfield dan Nichols (1999) bahwa pada dasarnya *supply chain* merupakan sekumpulan *supplyer* dan *konsumen* yang terhubung, setiap *konsumen* pada gilirannya akan menjadi suplier bagi organisasi hilir selanjutnya. Rangkaian hubungan *konsumen-supplier* tersebut terjadi dalam suatu rantang proses perubahan material, dimulai dari tahapan material alam hingga produk akhirnya mencapai pengguna akhir, bagai suatu rangkaian mata rantai yang terhubung secara linier. Namun bentuk jaringan *supply chain* dalam konteks bisnis yang sesungguhnya memiliki bentuk yang kompleks.

Kompleksitas hubungan tersebut terjadi karena suatu perusahaan memiliki hubungan ke hulu dengan beberapa pemasok (*multiple suppliers*) dan ke hilir dengan beberapa konsumen (*multiple consumers*). Secara lebih luas lagi terdapat pula hubungan antara suplier dengan suplier-nya suplier serta hubungan antara konsumen dengan konsumen-nya konsumen. Hal ini membentuk satu sistem pola jaringanya yang kompleks.
Pada jaringan ini terdapat ketergantungan antar berbagai pihak, sehingga hubungan inilebih tepat digambarkan dengan suatu jaringan (network) dari pada rantai (chain) (Christopher, 1998).

Dalam konteks konstruksi, kompleksitas supply chain konstruksi digambarkan oleh Vaidyanathan (2001)seperti tertera pada Gambar 2.7,secara makro bahwa pihak-pihak yang terlibat dapat dibagi menjadi dua kelompok besar yaitu: penyedia jasa yang terdiri dari penyandang dana, penyedia jasa struktur, mekanikal, elektrikal, dan arsitektur dan kelompok kedua yaitu penyedia barang/material yang terdiri dari pemasok material/produk bangunan dan subkontraktor.

Gambar 2.7 Rantai Pasok Konstruksi

Sumber: Vaidyanathan (2001)

Kedua kelompok besar ini akan memberikan kontribusi sesuai dengan fungsi dari masing-masing anggota kelompok tersebut kepada kontraktor sebagai bagian yang akan mewujudkan keinginan dari owner sehingga kontraktor secara kontinu dan langsung akan mempunyai hubungan garis komando terhadap owner. Sedangkan hubungan antara arsitek dengan owner hanya garis koordinasi. Sementara hubungan owner dengan sub kontraktor sebatas hanya untuk mengetahui aliran informasi dan aliran material.
Sejalan dengan pengertian *supply chain* dalam konteks manufaktur, maka dalam konteks konstruksi, *supply chain* dapat didefinisikan sebagai suatu proses dari sekumpulan aktivitas perubahan material alamhingga menjadi produk akhir (misalnya jalan, bangunan, dan jasa perencanaan), untuk digunakan olehpengguna jasa dengan mengabaikan batas-batas organisasi yang ada. Tambahan dalam definisi Tommelein dkk (2003) yang menyatakan bahwa dalam jaringan yang terstruktur tersebut dilakukan selain untuk memenuhi kebutuhan *owner*, juga untuk memenuhi kebutuhan seluruh anggota *supply chain* tersebut.

Dalam konteks pola tradisional, pembentukan *supply chain* konstruksi yang terlibat dalam suatu proses produksi, dimulai pada tahap penawaran, ketika suatu jaringan *supply chain* konstruksi suatu kontraktorakan memiliki daya saing tertentu terhadap jaringan *supply chain* konstruksi dari kontraktor lainnya dalam mencapai kebutuhan tender. Dalam tahap ini, hal itu menunjukkan bahwa persaingan yang terjadi bukan lagi persaingan antar perusahaan konstruksi secara individu, namun merupakan persaingan antar jaringan *supply chain* konstruksi – antar jaringan perusahaan-perusahaan yang tergabung dalam suatu hubungan proses produksi, yang ditawarkan dalam penawaran.

Dalam tahap pelaksanaan, dimana terjadi proses pengadaan yang dilakukan oleh kontraktor dalam penyusunan jaringan *supply chain*-nya, akan menentukan seberapa besar tingkat efisiensi yang terjadi dalam proses produksinya, hingga menghasilkan produk dan jasa yang sesuai dengan value dari *owner*. Apa yang terjadi dalam konstruksi tersebut membentuk pendapat yang menyatakan bahwa keunggulan persaingan yang menentukan aturan main sekarang ini adalah keunggulan persaingan antar jaringan *supply chain* (Christopher, 1998).

Ditengah kompetisi usaha yang semakin ketat, menuntut kontraktor untuk melakukan efisiensi dalam proses konstruksinya. Pola *supply chain* yang memiliki daya saing pada tahap pengadaan, selanjutnya akan memberikan kinerjanya pada tahap produksi (pelaksanaan). Hal itu menunjukkan bahwa desain suatu jaringan *supply chain* sangat penting peranannya. Suatu studi menunjukkan bahwa desain *supply chain* yang buruk memiliki potensi untuk meningkatkan biaya proyek hingga 10% (Bertelsen, 2002).

Hal ini menunjukkan bahwa pola *supply chain* konstruksi akan memberikan kontribusi terhadap efisiensisuatu pelaksanaan proyek, sehingga pola suatu *supply chain* konstruksi memiliki potensi untuk menjadisalah satu ruang yang memungkinkan untuk
dilakukannya peningkatan dalam industri konstruksi. Sehingga dalam konteks konstruksi dimana fragmentasi sudah menjadi bagian dari karakteristik industri ini, maka peningkatan yang dapat dilakukan adalah melalui manajemen hubungan terhadap organisasi yang terlibat dalam suatu susunan jaringan supply chain yang menghasilkan produk konstruksi tertentu. Konsep supply chain management merupakan konsep yang relatif baru. Konsep ini merupakan perluasandari konsep logistik dimana lingkupnya adalah optimasi aliran (optimizing flows) didalam lingkup suatu organisasi tertentu (Christopher, 1998).

Konsep supply chain management melihat bahwa konsep logistik belum mencukupi dalam usaha untuk mencapai optimalisasi aliran yang terjadi, sehingga perlu diperluashingga keluar batas organisasi tersebut - ke hulu dengan suplier-nya dan ke hilir dengan konsumennya (Christopher, 1998). Dengan demikian hal yang paling mendasar dari manajemen hubungan dalam suatu supply chain adalah yang menyangkut hubungan antar organisasi yang berbeda dalam suatu proses produksi. Hal ini sesuai dengan pendapat Hanfield & Nichols (1999) bahwa supply chain management merupakanupanan pendekatan manajemen yang terintegrasi dari aktivitas-aktivitas yang terjadi dalam proses perubahan material, melalui peningkatan hubungan dalam supply chain.

Dalam konteks persaingan bisnis yang semakin ketat, melalui penerapan konsep ini diharapkan daya saing yang berkelanjutan dapat tercapai (Christopher, 1998). Hal inilah yang menunjukkan pentingnya penerapan supply chain manajemen dalam praktek bisnis saat ini, termasuk dalam industri konstruksi. Fragmentasi yang sudah menjadi karakteristik industri konstruksi, yang disebabkan tingginya tingkat kebutuhan spesialisasi dalam industri ini, telah menyebabkan terpecah-pecahnya suatu proses (aktifitas) menjadi paket-paket yang lebih kecil, yang masing-masing melibatkan pihak tertentu. Sehingga dalam suatu proyek konstruksi bangunan, yang melibatkan item pekerjaan yang sangat banyak, yang menuntut keahlian tertentu didalam produknya, telah membentuk jaringan supply chain yang kompleks.

Hal itu menunjukkan bahwa karakteristik dalam industri konstruksinya pun telah menuntut suatu konsep manajemen yang dapat mengatur hubungan antar mata rantai yang menghasilkan output produk konstruksi. Sehingga peran konsep dalam industri konstruksi menjadi penting. Definisi ini diinterpretasikan oleh Arbulu dan Ballard (2005), yang mendefinisikan supply chain sebagai sebagaiselompok perusahaan dan individu yang bekerja
sama dalam suatu jaringan proses yang salingberhubungan. Menurutnya pula bahwa dalam suatu supply chain terdapat sistem pasokan yang harusdidefinisikan, dirancang, dan diimplementasikan untuk mendapatkan aliran yang efektif dari material, informasi dan dana dalam suatu supply chain.

![Diagram Konseptual Supply Chain Proyek Konstruksi](image)

Gambar 2.8 Konseptual supply chain Proyek Konstruksi

Pada Gambar 2.8 yang dikembangkan oleh O’Brien et al. (2002), terlihat keterlibatan beberapa pihak dalam proses produksi yang terjadi di dalam site (in site production), juga menunjukkan adanyarangkaian pihak yang menunjukkan proses produksi yang terjadi luar site (off site production). Rangkaian aktivitas subkontraktor sebagai pihak yang memberikan input pada site konstruksi dipahami sebagai pihak yang dapat melakukan proses produksinya diluar site. Berdasarkan pada model supply chain pada proyek konstruksi di atas, maka karakteristik dari supply chain konstruksi adalah:

- Karakteristik produknya unik – produk konstruksi bangunan pada umumnya dibuat berdasarkan permintaan tertentu (custom made product). Dengan demikian tidak ada satu pun produk konstruksi yang sama - walaupun hal ini tergantung pada tingkatan mana kita melihatnya.

- Dilakukan oleh organisasi yang bersifat sementara (temporary organisation).

- Suatu rangkaian supply chain yang terbentuk yang menghasilkan produk konstruksi, akanberakhir ketika selesai masa produksi.

- Produknya terikat pada tempat tertentu, sehingga proses produksinya berlangsung di site konstruksi (in site production). Hal ini juga memberikan
kontribusi terhadap keunikan produk konstruksi, karena pada proyek yang sama, baik kondisi fisik (kondisi tanah, pengaruh cuaca, dll) maupun non fisik (regulasi yang berlaku, kondisi lalulintas, dll) yang mempengaruhinya tidak akan pernah sama.

- **In site production** dan **off site production**. Terjadinya produksi didalam *site* konstruksi (**in site production**), telah membagi dua batasan proses yang terjadi dalam produksi konstruksi.

- Diproduksi dalam lingkungan alam yang tidak terkendali, sehingga terdapat ketidakpastian yang tinggi dalam konstruksi.

3.3.2. Konsep Rantai Pasok Konstruksi

![Konseptual SCP dalam Industri Konstruksi](image_url)

Gambar 2.9 Konseptual SCP dalam Industri Konstruksi

Sumber: O’Brien et al., 2002
Sebagaimana terlihat dalam Gambar 2.9, struktur pasar akan berinterkasi dengan perilaku pihak-pihak yang terlibat dalam pasar tersebut. Dalam hal ini, struktur akan mempengaruhi perilaku, dan perilaku akan mempengaruhi struktur pasar juga. Interaksi ini akan terlihat dari bagaimana perusahaan-perusahaanya yang ada berinteraksi dalam proses pengadaan. Perilaku akan terlihat sekali dalam proses ini, terkait dengan bagaimana formasi perikatan terjadi, transaksi terjadi dan pengelolaan dilakukan. Jadi dengan demikian, jika diharapkan akan dilakukan pengelolaan rantai pasok konstruksi, makagambaran akan strukturnya, perilakunya, dan interaksinya harus dapat teridentifikasi dengan baik, agar pengelolaan yang dirancang dapat menghasilkan kinerja rantai pasok konstruksi yang diharapkan.

- **Intra-organizational supply chain**, yang dimaksud dengan intra-organizational supply chain adalah sistem logistik di dalam perusahaan masing-masing perusahaan yang menjadi entitas dari rantai pasok. Sistem logistik ini hanya terbatas pada masing-masing perusahaan saja tidak terkait dengan perusahaan lainnya.

- **Inter-organizational supply chain**, tipe supply chain yang kedua, hubungan rantai pasok yang tergabung dalam suatu proyek konstruksi. Tipe ini melibatkan beberapa entitas dari perusahaan yang berbeda-beda dan selanjutnya bergabung di dalam suatu rantai pasok untuk proyek konstruksi.

- **Cross-organizational supply chain**, cross-organizational supply chain merupakan gabungan dari beberapa rantai pasok beserta beberapa clients. Tipe rantai pasok seperti ini banyak diimplementasikan pada rantai pasok industri konstruksi.
3.3.3. Konsep Rantai Pasok Hijau

Sumber: Diolah dari London, K., 2008
Gambar 2.10 Tipologi Organisasi Rantai Passok
Karena sebagian besar komponen produksi pada proyek konstruksi sangat tergantung kepadaketersediaan material (komoditas) untuk terciptanya produk konstruksi (sekitar 70% dari biayakonstruksi), maka, sebagaimana telah disampaikan pula oleh Glavinich (2008), pengelolaan rantai pasok yang hijau atau green supply chains merupakan hal yang strategis sebagai titik awal pembentukan untuk terciptanya konstruksi hijau atau konstruksi berkelanjutan dan pada akhirnya untuk terciptanya infrastruktur yang berkelanjutan.

Purchasing and Supply Agency mendefinisikan GSCMsebagai proses dimana organisasi memenuhi kebutuhannya akan barang, jasa, pekerjaan dan utilitas untuk mencapai nilai dari uang yang dikeluarkannya (value for money) dalam keseluruhan lingkup hidupnya yang bukan saja menguntungkan perusahaan tersebut tetapi juga kepada masyarakat danperekonomian dengan meminimalkan kerusakan terhadap lingkungan.
Dengan demikian, maka GSCM terkait dengan upaya untuk meningkatkan kinerja lingkungan dari suatu barang/jasa yang dibeli atau diadakan yang disediakan oleh supplier (Bowen et al., 2001).

![Diagram GSCM](image)

Sumber: Sarkis, 2003

Gambar 2.12 Framework GSCM

Pada Gambar 2.12 tersebut terlihat bahwa untuk setiap komponen rantai pasok beserta prosesnya dilakukan dengan selalu mempertimbangkan prinsip pengurangan penggunaan sumber daya alam dan energi, serta mengurangi waste yang dihasilkannya. Dampak terhadap lingkungan dari setiap komponen dan proses tersebut dapat merupakan dampak yang langsung diterima (direct), dampak yang diterima oleh semua pihak (shared), dan dampak tidak langsung (indirect) bagi pelaku proses pada rantai pasok konstruksi tersebut.

Di lain pihak pendekatan proses terkait dengan upaya memodifikasi praktek yang biasa dilakukan oleh supplier, misalnya keberadaan kebijakan perusahaan terkait pengurangan dampak terhadap lingkungan, penggunaan kriteria pemilihan supplier yang ramah lingkungan dan juga praktek dan persyaratan audit lingkungan.

Untuk mengimplementasikan GSCM, organisasi harus mengadopsi praktek GSCM yang mana di dalamnya termasuk mengikuti aturan manajemen lingkungan rantai pasok (environmental supply chain management guidelines). Beberapa studi mencoba untuk
mengidentifikasi praktek GSCM di dalam suatu organisasi yang termasuk ke dalam internal sistem seperti sistem manajemen lingkungan dan mutu. Manajemen lingkungan internal sangat penting untuk meningkatkan kinerja dari sisi lingkungan sebuah organisasi (Zhu et al., 2008). Zhu dan Sarkis (2008) mengidikasikan bahwa penerapan manajemen mutu dapat mempermudah sebuah organisasi untuk menerapkan GSCM.

Mereka mengusulkan bahwa dengan kontrol kualitas yang teliti, organisasi dapat meningkatkan kebiasaan environmental practice melalui pembelajaran yang diperoleh dari pengalaman saat menerapkan manajemen mutu mereka. Dengan menerima sertifikat ISO 14001 standart tentang Environmental Management System (EMS) organisasi dapat membuat struktur mekanisme untuk terus meningkatkan kinerja di bidang environmental (Kitazawa and Sarkis, 2000).

GSCM melibatkan praktek-praktek tradisional manajemen rantai pasok yang diintegrasikan dengan kriteria environment (lingkungan) atau masalah terhadap lingkungan dalam setiap keputusan dalam membeli produk dan juga hubungan jangka panjang dengan suplier (Gilbert, 2000). Rantai pasok hijau berusaha untuk membatasi limbah dalam sistem industri guna untuk menghemat energi dan mencegah pembuangan bahan berbahaya ke lingkungan.

Rantai pasok tradisional dan Rantai pasok hijau berbeda dalam beberapa hal (Tabel 2.1). Rantai tradisional sering mengutamakan pada tujuan ekonomi dan nilai produk (keuntungan), sedangkan rantai pasok hijau memberikan pertimbangan yang signifikan terhadap faktor lingkungan juga. Ketika rantai pasok tradisional tidak memperhitungkan standart lingkungan, mereka hanya sampai pada penerapan optimasi proses. Selain itu rantai pasok tradisional lebih sering berkonsentrasi pada pengendalian produk akhir dengan mengesampingkan efek negatif yang terjadi selama proses produksi (Ho, 2009).

Di sisi lain, rantai pasok hijau memperluas lingkupan pada tahap proses penambahan nilai produk (value adding process) tidak hanya sampai pada efek toksilogi pada manusia, tetapi juga pada efek negatif yang mungkin terjadi pada lingkungan alam, sehingga dampak ekologis yang dihasilkan lebih rendah ketimbang pada rantai pasok tradisional. Persyaratan ekologis dianggap sebagai kriteria utama untuk produk dan sistem produksinya, dan pada saat yang sama perusahaan harus menjamin kelangsungan dari sisi ekonomi dengan tetap kompetitif dan menghasilkan profit (Ho, 2009).

Salah satu persepsi awal saat memperkenalkan produk hijau (green product) di pasaran adalah biaya produksi yang lebih tinggi dibandingkan bila menggunakan sistem rantai pasok tradisional. Namun temuan terbaru menunjukkan bahwa inovasi dan perencanaan yang optimal secara dramatis dapat mengurangi biaya.

Tabel 2.1 Perbedaan Antara Rantai Pasok Tradisional dan Rantai Pasok Hijau

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Rantai Pasok Tradisional</th>
<th>Rantai Pasok Hijau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektif dan nilai-nilai utama</td>
<td>Ekonomi</td>
<td>Ekonomi dan Lingkungan</td>
</tr>
<tr>
<td>Optimasi Lingkungan</td>
<td>Dampak negatif pada lingkungan tinggi</td>
<td>Dampak negatif pada lingkungan rendah</td>
</tr>
<tr>
<td>Kriteria Pemilihan Suplier</td>
<td>Harga diantara supplier, sifat pemilihan cepat, hubungan dengan suplier jangka pendek</td>
<td>Aspek lingkungan dan harga diantara supplier, sifat pemilihan lama, hubungan dengan suplier jangka panjang</td>
</tr>
<tr>
<td>Tekanan Biaya Produksi dan Harga Jual</td>
<td>Tekanan pada biaya produksi tinggi, harga jual rendah</td>
<td>Tekanan pada biaya produksi tinggi, harga jual tinggi</td>
</tr>
</tbody>
</table>

Sumber : Ho et al., 2009

3.3.4. Kajian Rantai Pasok Hijau

Praktek GSCM dalam industri konstruksi dapat dibagi menjadi 3 tingkatan yaitu: Level Industri, Level Perusahaan, dan Level Proyek.

- **Praktek GSCM pada Level Industri**

Praktek GSCM pada level industri merupakan praktek dengan scope yang jauh lebih luas ketimbang di level perusahaan. Pada level ini, praktek GSCM berusaha untuk mengkaji dan melakukan optimasi dari channel structure untuk semua komoditas material hijau. Selain itu pada level ini akan dikaji mengenai
permasalahan dari supply dan demand komoditas material hijau terutama untuk mendukung konsep keberlanjutan secara global. Karena domain cakupannya yang luas, termasuk di dalamnya diikutsertakan aspek lingkungan pendukung, maka hal ini juga berdampak pada luasnya domain wilayah hukum dan kebijakan terkait.

- **Praktek GSCM pada Level Perusahaan**

Praktek GSCM pada level perusahaan menekankan pada bagaimana hubungan antara perusahaan kontraktor dengan supplier-suplierannya, serta melihat bagaimana aspek pemilihan suplier yang sesuai dengan perusahaan kontraktor dalam pengerjaan proyek hijau.

Tabel 2.2 Kategori Praktek GSCM pada Level Perusahaan

| Manajemen Lingkungan Internal Perusahaan | • Komitmen untuk melaksanakan praktek GSCM oleh senior manager
| | • Dukungan *mid level manager* untuk melaksanakan praktek GSCM
| | • Kerja sama lintas fungsional untuk perbaikan lingkungan
| | • Penerapan *Total Quality Environmental Management*
| | • Penyesuaian lingkungan dan audit sertifikat ISO 14001
| | • Penerapan *Environmental Management System* (EMS) |
| Manajemen Lingkungan Eksternal Perusahaan | • Memberikan spesifikasi desain kepada suplier yang mencakup persyaratan lingkungan untuk barang yang akan dibeli
| | • Memiliki visi yang sama dengan suplier dalam hal ramah lingkungan
| | • *Environmental Audit* terhadap manajemen internal suplier
| | • Sertifikasi ISO 14001
| | • Evaluasi praktek ramah lingkungan pada suplierinya suplier
| | • Kooperasi dengan konsumen terhadap desain ramah lingkungan
| | • Kooperasi dengan konsumen terhadap sistem produksi yang bersih |
Kaji Rantai Pasok Material dan Peralatan Konstruksi
Dalam Mendukung Investasi di Bidang Konstruksi Berkelanjutan

<table>
<thead>
<tr>
<th>Pengembalian Investasi</th>
<th>Desain Ramah Lingkungan</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kooperasi dengan konsumen terhadap penggunaan kemasan produk hijau</td>
<td>• Desain produk untuk mengurangi konsumsi material/energi</td>
</tr>
<tr>
<td></td>
<td>• Pemulihan investasi (penjualan) dari kelebihan persediaan/bahan</td>
</tr>
<tr>
<td></td>
<td>• Penjualan barang bekas dan bahan sisa yang diperoleh selama proses produksi</td>
</tr>
<tr>
<td></td>
<td>• Penjualan barang modal yang berlebih</td>
</tr>
<tr>
<td></td>
<td>• Desain produk yang reuse, recycle, dan recovery of material</td>
</tr>
<tr>
<td></td>
<td>• Desain produk untuk menghindari atau mengurangi penggunaan bahan berbahaya pada proses produksi</td>
</tr>
</tbody>
</table>

Sumber: Zhu and Sarkis, 2004

- **Praktek GSCM pada Level Proyek**

Aplikasi konsep konstruksi berkelanjutan di Indonesia sendiri telah dipelopori oleh PT. Pembangunan Perumahan (Persero), yang memposisikan diri mereka sebagai kontraktor hijau (green contractor) dalam industri konstruksi di Indonesia. Komitmen PT. PP dalam bidang konstruksi berkelanjutan ditunjukkan oleh pengalaman mereka yang cukup ekstensif dalam menangani proyek yang mendapatkan sertifikasi bangunan hijau dari Greenship Indonesia seperti proyek pembangunan gedung kantor Kedutaan Austria di Jakarta, gedung Perpustakaan Pusat Universitas Indonesia, serta gedung Kantor Kementerian Pekerjaan Umum Republik Indonesia.

Lebih jauh lagi, komitmen PT. PP dalam bidang konstruksi berkelanjutan juga ditunjukkan oleh adanya suatu kebijakan lingkungan pada tingkat perusahaan

3.4. Material dan Peralatan Konstruksi

3.4.1. Definisi Material dan Peralatan Konstruksi Hijau

Perhatian pada pengaruh dan dampak material bagi lingkungan hidup saat ini mulai meningkat. Desain bangunan hijau harus dimulai dari memilih material berkelanjutan (*sustainable materials*) dengan fitur yang serupa dengan material yang digunakan pada rumah tradisional (Biagnozzi, 2011). Dalam rangka memenuhi kebutuhan material yang berkelanjutan agar dapat terintegrasi dengan bangunan apapun, pertama-tama dibutuhkan detail dan pemahaman yang mendalam terhadap material *green*.

Dengan sejumlah variasi material yang digunakan pada bangunan saat ini dan semakin banyak perusahaan yang mengklaim material mereka *green*, pemilihan dan penentuan akan material yang green bukan hal yang sederhana.

Karena ketidakpastian ini, banyak material telah diluncurkan di pasaran dengan embel-embel “green”, namun tanpa bukti apapun yang menunjukkannya sebagai material green dan yang dapat mengurangi kemungkinan terjadinya klaim terhadap produk. Dalam beberapa kesempatan, karakter green dari material dengan mudahnya diasosiasikan dengan sifat alami dari bahan yang digunakan. Meskipun beberapa material yang pada awalnya tampak seperti alami, contohnya asbestos (saat ini dilarang karena efek carcinogen yang ditimbulkannya), radon (gas radioaktif yang dapat menyebabkan kanker paru-paru), dll menurut penelitian terbaru tidak dipertimbangkan untuk digunakan (Sandrolini, 2008).

Saat ini beberapa organisasi dunia diketahui telah mengeluarkan sertifikat pada material yang memenuhi spesifikasi standart green. Pemilik bangunan dituntut untuk mewaspadai beragam material yang mengklaim green, namun dalam kenyataannya hanya untuk mendapatkan profit semata. Beberapa perusahaan tersebut menawarkan produk yang tidak memenuhi kriteria green. Akan tetapi saat ini data dan informasi yang memadai dan penelitian terkait material green belum banyak. Seperti apa karakteristik material green juga belum dideskripsikan secara umum dan luas. Khususnya bagi material yang telah berlabelkan green, keabsahannya belum dapat dipertanggungjawabkan terlebih data yang berhubungan dengan dampak yang ditimbulkan terhadap kesehatan dan lingkungan.

3.4.2. **Green Label** (Eko Label)
Tren penggunaan material *green* mulai diminati banyak orang di berbagai negara mengakibatkan banyak perusahaan yang memproduksi material yang mereka anggap *green*. Akan tetapi dengan banyaknya kasus terkait material *green* yang palsu, maka penting juga untuk mengetahui siapa pihak yang memberikan label *green* pada produk itu. Banyak organisasi yang memberikan label *green* ternyata disponsori oleh perusahaan-perusahaan tersebut, hal ini semakin menambah rumit dalam proses menentukan seberapa *green* sebuah material yang harus dipenuhi (Fithian & Sheets, 2009).

Sekiranya terdapat 50 program *green label* di dunia. Masing-masing merupakan organisasi yang berbeda disamping memiliki kriteria rangking masing-masing, dan mengangkat isu spesifik yang berbeda. Beberapa kesamaan pada ke 50 program tersebut, yaitu mereka membahas hal-hal sebagai berikut:

- Teknik konstruksi
- Mengurangi sisa dan mendaurn ulang material di sepanjang fase konstruksi
- Pengaruh produk terhadap lingkungan tertutup
- Efisiensi penggunaan air
- Pilihan dalam menggunakan energi terbarukan
- Pengembangan lahan dengan prinsip *sustainable*

Karena setiap program labeling mengutamakan isu-isu yang berbeda, dan akibatnya mereka membuat *checklist* yang berbeda juga sesuai dengan isu yang mereka anggap penting.
Empat organisasi *green labelling* terbesar yang paling dikenal dewasa ini antara lain: *LEED, Energy Star, Green Globe*, dan *Green Seal*.

- *LEED* didirikan oleh *U.S. Green Building Council*,
- *Green Globe* didirikan oleh *U.S. Green Building Initiative*,
- *Green Seal* merupakan organisasi *green label* mandiri terbesar di U.S

Di Indonesia, *green label* dikenal dengan nama eko label. Merupakan suatu pernyataan yang menunjukkan aspek lingkungan dalam suatu produk atau jasa. Pada hakikatnya label merupakan sarana komunikasi antara produsen dan konsumen untuk menyampaikan informasi yang ingin disampaikan pihak produsen ke konsumennya.

Eko label dapat dimanfaatkan untuk mendorong konsumen agar memilih produk-produk yang memberikan dampak lingkungan yang lebih kecil dibandingkan produk lain yang sejenis. Selain itu, ekolabel dapat memberikan citra yang positif bagi ‘brand’ produk maupun perusahaan yang memproduksi dan/atau mengedarinya di pasar, yang sekaligus menjadi investasi bagi peningkatan daya saing di pasar.
Ukuran keberhasilan ekolabel dapat dilihat dari adanya perbaikan kualitas lingkungan yang dapat dikaftikan langsung dengan produksi maupun produk yang telah mendapat ekolabel. Selain itu, tingkat peran serta dari kalangan pelaku usaha dalam menerapkan ekolabel juga menjadi indikator penting keberhasilan ekolabel. Produk yang diberi ekolabel selayaknya adalah produk yang dalam daur hidupnya mulai dari pengadaan bahan baku, proses produksi, pendistribusian, penggunaan, dan pembuangan setelah penggunaan, memberi dampak lingkungan relatif lebih kecil dibandingkan produk lain yang sejenis.

Dalam prakteknya secara garis besar ekolabel di dunia terdiri dari tiga tipe berikut:

- **Tipe I** (*voluntary, multiple criteria based practitioner programs*)
 Jenis ekolabel yang banyak digunakan di dunia saat ini yang dilaksanakan oleh pihak ketiga yang independen. Kriteria pemberian ekolabel pada umumnya bersifat multi-kriteria, berdasarkan pertimbangan pada dampak lingkungan yang terjadi sepanjang daur hidup produk.

- **Tipe II** (*self declaration environmental claims*)

- **Tipe III** (*quantified product information label*)
 Ekolabel tipe 3 berbasis pada multi-kriteria seperti pada ekolabel tipe 1, namun informasi rinci mengenai nilai pencapaian pada masing-masing item kriteria disajikan secara kuantitatif dalam label. Evaluasi pencapaian pada masing-masing item kriteria tersebut didasarkan pada suatu studi kajian daur hidup produk. Dengan penyajian informasi tersebut, konsumen diharapkan dapat membandingkan kinerja lingkungan oleh berbagai produk berdasarkan informasi pada label dan selanjutnya memilih produk berdasarkan item kriteria yang dirasakan penting oleh masing-masing konsumen.

Sebagai salah satu upaya untuk menghindari penggunaan ekolabel sebagai hambatan dalam perdagangan secara tidak bertanggung jawab, ISO mengembangkan satu seri
standar internasional untuk ekolabel, yang menjadi bagian dari standar ISO seri 14000 untuk Manajemen Lingkungan. Pada saat ini, standar ISO untuk ekolabel meliputi:

- ISO 14020: Prinsip Umum Ekolabel
- ISO 14021: Ekolabel Tipe 2
- ISO 14024: Ekolabel Tipe 1
- ISO/TR 15025: Ekolabel Tipe 3

Semua standar ISO tersebut di atas berisi pedoman yang bersifat sukarela dan tidak bersifat mengikat. Walaupun demikian, beberapa program/pelaksana ekolabel telah mulai upaya harmonisasi dengan pedoman dalam standar ISO tersebut, walaupun pada umumnya belum sepenuhnya tercapai.

Beberapa prinsip material ramah lingkungan antara lain:

- Tidak beracun, sebelum maupun sesudah digunakan
- Dalam proses pembuatanannya tidak memproduksi zat-zat berbahaya bagi lingkungan
- Dapat menghubungkan kita dengan alam, dalam arti kita makin dekat dengan alam karena kesan alami dari material tersebut
- Bisa didapatkan dengan mudah dan dekat (tidak memerlukan ongkos atau proses transportasi yang besar) sehingga menghemat konsumsi energi
- Bahan material yang dapat terurai dengan mudah secara alami.
6.1. Metodologi Studi

Secara teknis, metodologi yang dikembangkan akan mengaitkan antara beberapa variabel sistem rantai pasok hijau yang ada di Indonesia. Pentahapan dari metodologi studi dibagi dan disesuaikan dengan tahapan pelaporan sebagai berikut:

(a) Tahap I (Persiapan)
Pada tahapan ini, kegiatan yang dilakukan meliputi kajian literatur terhadap sustainable construction (konstruksi berkelanjutan), konstruksi hijau, konsep rantai pasok, konsep rantai pasok hijau, dan kajian material dan peralatan konstruksi hijau. Selanjutnya mengidentifikasi dan mendefinisikan komoditas material hijau yang digunakan pada proyek green building, mengidentifikasi indikator rantai pasok hijau, dan merancang pelaksanaan survei.

(b) Tahap II (Pelaksanaan Survei)
Pada tahapan ini, kegiatan yang utama yang akan dilaksanakan adalah pelaksanaan survei ke lokasi-locasi yang telah ditentukan antara lain Jakarta, Denpasar, Palembang, dan Balikpapan. Setelah pelaksanaan survei selesai dilanjutkan dengan pelaksanaan FGD yang akan membahas tentang hasil survei, dan dari hasil FGD ini diharapkan memberikan masukan terhadap hasil survei yang akan digunakan sebagai inputan kajian rantai pasok material dan peralatan konstruksi dalam mendukung investasi di bidang konstruksi berkelanjutan.

(c) Tahap III (Analisa)
Pada tahapan ini, akan dilakukan analisa lebih lanjut terhadap sistem rantai pasok hijau terhadap level industri, level perusahaan, dan level proyek. Hasil analisa kemudian akan dijadikan patokan untuk merumuskan rekomendasi pada pemerintah. Langkah selanjutnya adalah melaksanakan loka karya.

(d) Tahap IV (Pengembangan dan Rekomendasi)
Tahapan ini meliputi analisa akhir terkait potensi pengembangan serta perbaikan usulan rekomendasi kepada pemerintah.
6.2. Program kerja
6.2.1. Tahap I: Persiapan

Tahapan awal dari pekerjaan ini dilakukan melalui beberapa kegiatan yang terdiri dari:

(a) Perancangan Studi

Tujuan dari kegiatan ini adalah:

- Melakukan perancangan secara lebih detail tahap-tahap pelaksanaan kegiatan berikutnya, untuk mengefisienkan penggunaan waktu dan sumber daya.
- Menentukan metoda pendekatan terhadap studi yang akan dilakukan dan analisis yang akan digunakan.

(b) Studi Literatur

Tujuan dari kegiatan ini adalah:

- Melihat sejarah perkembangan konsep pengembangan berkelanjutan (sustainable development) menuju ke konsep konstruksi berkelanjutan (sustainable construction).
- Memahami konsep konstruksi hijau (green construction) sebagai bagian dari konsep konstruksi berkelanjutan, selanjutnya memahami konsep rantai pasok dan mengkaji lebih dalam konsep rantai pasok hijau.
- Mengidentifikasi dan mendefinisikan komoditas hijau yang biasa/umum digunakan dalam pekerjaan green building di Indonesia.
- Memaksimalkan kemungkinan penggunaan data yang pernah dikembangkan untuk memperkaya bahasan dan validasi dalam penelitian ini.

(c) Perancangan Metoda Pengumpulan Data

Terbagi menjadi beberapa sub bagian antara lain:

Identifikasi Responden

Responden dipilih menggunakan teknik non probability sampling dimana responden yang dipilih hanya pihak-pihak yang terlibat baik secara langsung maupun tidak langsung dengan isu-isu konstruksi berkelanjutan. Pihak-pihak tersebut antara lain penyedia jasa, pengguna jasa, supplier material dan peralatan konstruksi, serta instansi/ pihak terkait.
Identifikasi Kebutuhan Data

Keluaran dari studi kajian rantai pasok material dan peralatan konstruksi dalam mendukung investasi di bidang konstruksi berkelanjutan ini terbagi menjadi 4 yaitu:

- Identifikasi potensi dan kriteria material dan peralatan di bidang konstruksi berkelanjutan
- Pemetaan rantai pasok material dan peralatan bidang konstruksi berkelanjutan dalam negeri
- Keseimbangan rantai pasok material dan peralatan di bidang konstruksi berkelanjutan
- Rumusan kebijakan nasional dalam pengelolaan material dan peralatan di bidang konstruksi berkelanjutan

Rumusan untuk kebijakan nasional akan disimpulkan dengan mempertimbangkan dari hasil studi ini secara keseluruhan. Oleh karena itu data yang dibutuhkan hanya akan dibagi menjadi 3 kategori, yakni:

- Data yang dibutuhkan untuk identifikasi dan kriteria material dan peralatan konstruksi berkelanjutan. Terdiri atas: jenis dan kategori material, kriteria dan standart tentang material dan peralatan hijau.
- Data yang dibutuhkan untuk pemetaan rantai pasok material dan peralatan konstruksi berkelanjutan. Terdiri atas: data pihak yang terlibat, identifikasi hubungan antar pihak-pihak, channel structure, dan kapasitas pihak-pihak.
- Data yang dibutuhkan untuk melihat keseimbangan rantai pasok material dan peralatan konstruksi berkelanjutan

Penentuan Metoda Pengumpulan Data

Pengumpulan data dilakukan dengan dua cara yakni survei data sekunder dan survei data primer. Adapun metoda pelaksanaan survei tersebut dijelaskan sebagai berikut:

- Survei Data Sekunder
 Survei sekunder dilakukan dengan mendatangi instansi terkait untuk meminta sejumlah dokumentasi data dari institusi pengelolaan
sistem rantai pasok material dan peralatan konstruksi berkelanjutan dan sejumlah instansi lain yang dapat menyediakan data yang berkaitan dengan pelaksanaan studi.

- Survei Data Primer
 Survei primer dilakukan dengan pengamatan/penghitungan/wawancara langsung, khususnya yang berkaitan dengan kebutuhan material dan peralatan konstruksi berkelanjutan.

6.2.2. Tahap II: Pelaksanaan Survei

Tahap ke II dari pekerjaan inil dilakukan melalui beberapa kegiatan yang terdiri dari:

(a) Pelaksanaan Survei
 Tujuan dari kegiatan ini adalah mengumpulkan data primer/ sekunder dengan mendatangi langsung tempat survei dan melaksanakan pengambilan data terhadap responden penelitian.

(b) FGD
 Tujuan dari kegiatan ini adalah melakukan validasi terhadap hasil survey, sehingga hasil dari kegiatan ini dapat dimanfaatkan untuk menjadi salah satu inputan dalam sasaran dari kajian rantai pasok material dan peralatan konstruksi dalam mendukung investasi di bidang konstruksi berkelanjutan.

6.2.3. Tahap III: Analisa Data

Tahap ke III dari pekerjaan ini meliputi beberapa kegiatan yang terdiri dari:

(a) Analisa Rantai Pasok Hijau
 Tujuan dari kegiatan ini adalah melakukan analisa rantai pasok hijau pada level industri, level perusahaan, dan level proyek dengan mengacu pada keluaran penelitian, identifikasi potensi dan kriteria material dan peralatan di bidang konstruksi berkelanjutan, pemetaan dan keseimbangan rantai pasok material dan peralatan bidang konstruksi berkelanjutan dalam negeri.

(b) Loka karya
 Tujuan dari kegiatan loka karya terhadap kajian rantai pasok material dan peralatan konstruksi dalam mendukung investasi di bidang konstruksi berkelanjutan adalah:
• Mensosialisasikan hasil kegiatan kajian rantai pasok konstruksi berkelanjutan,
• Mensosialisasikan usulan rekomendasi kebijakan kepada pemerintah mengacu pada hasil penelitian ini.

6.2.4. Tahap IV: Finalisasi Studi

Tahap ini merupakan tahap akhir dari studi kajian rantai pasok material dan peralatan konstruksi berkelanjutan, di mana berbagai masukan dari sejumlah pihak dari rangkaian presentasi yang dilakukan akan menjadi masukan untuk melakukan perbaikan pelaporan dan menyusun kesimpulan serta rekomendasi hasil studi ini.

Diharapkan rekomendasi yang dihasilkan dapat digunakan/ dimanfaatkan sebagai pegangan untuk arahan kebijakan pengembangan sistem rantai pasok material dan peralatan konstruksi berkelanjutan, khususnya untuk untuk instansi-instansi, seperti kontraktor, subkontraktor, owner, dan lain-lain.

Penyusunan program ini didasarkan kepada hasil analisis yang menunjukkan prioritas program sesuai tingkat kepentingannya. Selain itu, disusun juga sejumlah saran yang dibutuhkan untuk menyusun kebijakan pendukung bagi pelaksanaan program pengembangan sistem rantai pasok yang diprioritaskan tersebut.

6.3. Instrumen Survei

Pada penelitian ini, data diperoleh melalui wawancara yang ditujukan kepada responden. Responden pada penelitian ini terdiri dari 3 (tiga) yaitu industri, perusahaan dan proyek. Ruang lingkup dari masing-masing responden memiliki karakteristik yang berbeda. Perbedaan karakteristik terdapat pada jenis pertanyaan yang diajukan kepada masing-masing responden.

Adapun rincian pertanyaan untuk masing-masing responden terdiri dari:

(a) Industri
Kategori pertanyaan pada industri terdiri dari 4 (empat) bagian yaitu:
 i. Implementasi konsep hijau
 ii. Praktek rantai pasok
 iii. Hubungan dalam rantai pasok
iv. Permasalahan dan rekomendasi

Jenis pertanyaan pada responden industri meliputi persepsi yang dimiliki oleh industri terhadap konsep industri hijau. Kemauan untuk memproduksi hijau merupakan internal driven atau memang ada kebijakan eksternal yang mendorongnya. Untuk mewujudkan industri hijau, tentunya juga dipengaruhi bagaimana cara perolehan bahan baku yang hijau juga. Cara perolehan bahan baku meliputi apakah berasal dari lokal atau impor dan berapa persentasenya.

Selain itu, apakah dalam menghasilkan produksi hijau juga dipengaruhi oleh permintaan pasar atau hanya oleh konsumen tertentu. Dua faktor ini akan mempengaruhi kelanjutan dari industri dalam rangka mewujudkan industri hijau. Seperti yang disebutkan pada bagian sebelumnya, berkaitan dengan pengadaan bahan baku, apakah industri juga menentukan prasyarat tertentu bagi para penyedia bahan baku. Sehingga dari pertanyaan-pertanyaan di atas diharapkan dapat menggambarkan struktur channel dari industri yang hijau.

Responden yang dijadikan sebagai sample adalah Krakatau Steel yang berada di Cilegon. Pertimbangan pengambilan sampel di Krakatau Steel adalah produk dari Krakatau Steel merupakan produk yang dominan digunakan di proyek konstruksi. Produk tersebut adalah baja, yang merupakan material utama dalam proyek konstruksi.

(b) Perusahaan

Jenis pertanyaan pada responden perusahaan terdiri dari 9 (sembilan) bagian, yang meliputi:

i. Karakteristik produk

Pada bagian ini, terdapat beberapa pertanyaan yang menjadi bahan interview seperti pengendalian bahan baku apakah bahan baku yang digunakan memiliki sertifikasi ramah lingkungan. Apabila tidak ada apakah ada upaya untuk menggantikan bahan baku yang ramah terhadap lingkungan. Selain identifikasi bahan baku, apakah perusahaan juga melakukan terhadap kebutuhan energi, penggantian energi yang terbarukan (EBT), pemeliharaan peralatan secara berkala. Keluaran terakhir dari item pertanyaan ini adalah apakah produk yang dihasilkan mampu memenuhi kriteria sebagai eco product.

ii. Sumber daya

Pertanyaan pada bagian ini didesain untuk mendapatkan informasi sampai sejauh mana upaya dari perusahaan tersebut memahami konsep hijau. Sebagai contoh bagaimana
perusahaan mengimplementasikan konsep K3L. Upaya ini dilakukan dengan tujuan untuk mengurangi terjadinya kecelakaan selama di lingkungan kerja.

iii. Definisi material dan peralatan hijau

Sebagai perusahaan yang menghasilkan produk material dan peralatan, tentunya diharapkan juga memahami definisi dari material dan peralatan hijau. Sehingga pada bagian ini pertanyaan pada bagian ini, difokuskan bagaimana perusahaan mendefinisikan material dan peralatan hijau.

iv. Manajemen lingkungan internal perusahaan

Manajemen lingkungan internal perusahaan berfokus pada kebijakan perusahaan untuk melakukan budaya ramah lingkungan yang terintegrasi di dalam Total Quality Management.

v. Manajemen lingkungan eksternal perusahaan

Manajemen lingkungan eksternal perusahaan merupakan upaya perusahaan untuk menjalin hubungan kerja pada rekanan perusahaan lain yang menjadi pemasok. Dalam menjalin hubungan kerja dengan pemasok, apakah perusahaan juga menetapkan sebuah kriteria atau persyaratan lain untuk mendukung mewujudkan konsep hijau. Kriteria yang dimaksud adalah apakah telah tersertifikasi ISO 14001.

vi. Pengembalian investasi

Upaya untuk mewujudkan konsep hijau juga harus didukung investasi. Investasi yang dimaksud adalah upaya untuk mengendalikan terhadap kelebihan material, menjual barang atau bekas. Tujuannya adalah untuk melakukan efisiensi terhadap material sehingga material yang kelebihan atau yang sudah tidak terpakai dapat mengembalikan investasi meskipun dalam jumlah yang tidak siginfikan.

vii. Desain ramah lingkungan

Lingkup pada bagian ini, apakah ada upaya perusahaan untuk menggunakan desain yang ramah lingkungan atau bahan yang dapat di reuse, recycle dan dan recovery.

viii. Rantai pasok perusahaan

Rantai pasok perusahaan merupakan bagian yang tidak dapat dilepaskan dari perusahaan dalam hubungannya sebagai customer-supplier. Oleh karena itu, pada bagian ini
pertanyaan difokuskan bagaimana hubungan perusahaan dengan para pemasoknya untuk mewujudkan material dan peralatan hijau sebagai keluaran akhir.

ix. Permasalahan dan rekomendasi

Bagian ini merupakan kesimpulan akhir dari semua pertanyaan di industri, perusahaan dan di proyek, apakah ada permasalahan yang dihadapi untuk mewujudkan konsep hijau serta apa usulan kepada kementerian atau lembaga terkait.

(c) Proyek

Jenis pertanyaan pada responden proyek terdiri dari 4 (empat) bagian, yang meliputi:

i. Definisi green construction

Pada bagian ini, pertanyaan difokuskan pada bagaimana pelaksanaan proyek konstruksi memahami proses konstruksi hijau yang dimulai dari pemilihan material hijau dan pertimbangan menggunakan material hijau.

ii. Sumber dan siklus material

Sumber dan siklus material menjadi bahan interview di proyek konstruksi. Upaya menggunakan material lokal dan material bekas bangunan dari proyek atau dari tempat lain adalah bagian dari realisasi konstruksi hijau. Tentunya penggunaan material bekas dari bangunan juga harus disertai dengan kriteria tertentu. Penggunaan material prefabrikasi juga menjadi bagian dari lingkup pertanyaan. Pemanfaatan material prefabrikasi dengan tujuan untuk mengurangi limbah di proyek konstruksi.

iii. Pengelolaan alat berat

Selain material, alat berat juga memberikan kontribusi konstruksi hijau. Oleh karena itu, hal ini menjadi salah satu pertanyaan apakah proyek konstruksi juga melakukan pengendalian terhadap alat berat. Sebagai contoh, apakah proyek juga berupaya untuk mengurangi emisi karbon yang dihasilkan dari penggunaan alat berat. Pertimbangan usia dan pemeliharaan alat secara berkala apakah juga menjadi prioritas dalam pemilihan alat berat.

iv. Permasalahan dan rekomendasi

Seperti pada bagian sebelumnya, bagian ini digali dengan tujuan untuk memperoleh gambaran permasalahan dalam mengimplementasikan konstruksi hijau di tingkat proyek.
6.4. Kesesuaian instrumen survei dengan sasaran kerangka acuan kerja

Instrumen survei yang telah disusun mengacu pada kerangka acuan kerja yang telah ditetapkan. Pada Tabel 3.1. menunjukkan kesesuaian antara instrumen survei dengan kerangka acuan kerja.
<table>
<thead>
<tr>
<th>Item Pertanyaan</th>
<th>Manufaktur</th>
<th>Supplier/Subkon</th>
<th>Kontraktor</th>
<th>Asosiasi</th>
<th>Kementerian</th>
<th>Kesesuaian dengan Sasaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material & Peralatan Konstruksi Berkelanjutan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifikasi bahan baku dan penggunaan energi</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K1, K5</td>
</tr>
<tr>
<td>Upaya penghematan energi dan penggunaan EBT</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K5</td>
</tr>
<tr>
<td>Program menjaga kinerja mesin produksi</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K1</td>
</tr>
<tr>
<td>Upaya peningkatan efisiensi proses produksi</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K1, K2</td>
</tr>
<tr>
<td>Identifikasi produk</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K1, K2</td>
</tr>
<tr>
<td>Program K3L bagi tenaga kerja</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>K1, K2</td>
</tr>
<tr>
<td>Identifikasi pengolahan limbah dan emisi</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>K1, K2, K4</td>
</tr>
<tr>
<td>Upaya penurunan limbah dan emisi</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>K4</td>
</tr>
<tr>
<td>Pengadaan bahan baku</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K1, K2, K4</td>
</tr>
<tr>
<td>Asal pasokan bahan baku</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>K1, K2</td>
</tr>
<tr>
<td>Jaringan distribusi bahan baku</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>K1, K2</td>
</tr>
<tr>
<td>Kebijakan pemerintah dalam pengadaan bahan baku</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>K1, K2</td>
</tr>
<tr>
<td>Kebijakan perusahaan dalam mengendalikan harga</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K2</td>
</tr>
<tr>
<td>Permasalahan yang dihadapi</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Item Pertanyaan</td>
<td>Manufaktur</td>
<td>Supplier/Subkon</td>
<td>Kontraktor</td>
<td>Asosiasi</td>
<td>Kementerian</td>
<td>Desain Ramah Lingkungan</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>1. Pengalaman perusahaan dalam proyek hijau</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>2. Proses pengadaan proyek hijau</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>3. Konsep manajemen rantai pasok hijau</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>4. Manajemen Lingkungan Internal Perusahaan</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>5. Manajemen Lingkungan Eksternal Perusahaan</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>6. Desain Ramah Lingkungan</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>7. Kebijakan perusahaan terkait proyek hijau</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>8. Kebijakan perusahaan terkait proyek hijau</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>9. Pihak-pihak yang terlibat</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Item Pertanyaan</td>
<td>Pihak-pihak yang terlibat</td>
<td>Kesesuaian dengan Sasaran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material & Peralatan Konstruksi Berkelanjutan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufaktur</td>
<td>Supplier/</td>
<td>Kontraktor</td>
<td>Asosiasi</td>
<td>Kementerian</td>
<td></td>
</tr>
<tr>
<td>Tepat guna lahan</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>-</td>
<td>K3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Efisiensi dan konservasi energi</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>-</td>
<td>K3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Konservasi air</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>-</td>
<td>K4</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Sumber dan siklus material</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>-</td>
<td>K5</td>
<td>4, 5</td>
</tr>
<tr>
<td>Kesehatan dan kenyamanan dalam ruang</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>-</td>
<td>K6</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Manajemen lingkungan bangunan</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>-</td>
<td>K7</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Keterangan:

<table>
<thead>
<tr>
<th>Sasaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Definisi material dan peralatan di bidang konstruksi berkelanjutan</td>
</tr>
<tr>
<td>2 Kriteria material dan peralatan di bidang konstruksi berkelanjutan</td>
</tr>
<tr>
<td>3 Identifikasi potensi material dan peralatan di bidang konstruksi berkelanjutan dalam negeri</td>
</tr>
<tr>
<td>4 Pemetaan rantai pasok material dan peralatan di bidang konstruksi berkelanjutan dalam negeri</td>
</tr>
<tr>
<td>5 Keseimbangan rantai pasok material dan peralatan di bidang konstruksi berkelanjutan dalam mendukung investasi konstruksi di lingkup Pekerjaan Umum</td>
</tr>
<tr>
<td>6 Rumusan kebijakan nasional dalam pengelolaan material dan peralatan di bidang konstruksi berkelanjutan dalam mendukung investasi konstruksi di lingkup Pekerjaan Umum</td>
</tr>
</tbody>
</table>

Keterangan:

<table>
<thead>
<tr>
<th>Sasaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kementerian Perindustrian</td>
</tr>
<tr>
<td>2 Kementerian Perdagangan</td>
</tr>
<tr>
<td>3 Kementerian Pekerjaan Umum</td>
</tr>
<tr>
<td>4 Kementerian Lingkungan Hidup</td>
</tr>
<tr>
<td>5 Kementerian ESDM</td>
</tr>
</tbody>
</table>
6.5. Responden Survei

Responden survei pada penelitian ini terbagi menjadi 3 (tiga) macam yaitu industri, perusahaan dan proyek. Adapun responden survei pada penelitian ini dapat dilihat pada Tabel 3.4.

<table>
<thead>
<tr>
<th>No</th>
<th>Kategori</th>
<th>Lokasi</th>
<th>Nama Responden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industri</td>
<td>Cilegon</td>
<td>PT. Krakatau Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PT. Pembangunan Perumahan</td>
</tr>
<tr>
<td>2</td>
<td>Perusahaan</td>
<td>Jakarta</td>
<td>PT. Waskita Karya</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pengembangan Bandara Internasional - PT. Adhi Karya</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Renovasi Gedung Kedatangan Domestik menjadi Internasional - PT. Waskita KSO</td>
</tr>
<tr>
<td>3</td>
<td>Proyek (3.1)</td>
<td>Denpasar</td>
<td>Rumah Sakit Jiwa Bangli - PT. Hutama Karya</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hotel Mercure - PT. Nusa Konstruksi Enjineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hotel Ritz Carlton - PT. Multi Struktur</td>
</tr>
<tr>
<td></td>
<td>Proyek (3.2)</td>
<td>Balikpapan</td>
<td>Rumah Sakit Umum Daerah - PT. Pembangunan Perumahan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gedung Parkir Bandara Sepinggan - PT. Wika KSO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stadion Balikpapan - PT. Waskita Karya</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penta City Shopping Venue - PT. Nusa Konstruksi Enjineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reklamasi Pantai Balikpapan & Struktur Promanage - PT. PP</td>
</tr>
<tr>
<td></td>
<td>Proyek (3.3.)</td>
<td>Palembang</td>
<td>Hotel Tune - PT. Maju Mapan Bangsa Indo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hotel Amaris - PT. Prambanan Dwi Paka</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PT. Pembangunan Perumahan, Divisi Sumatera</td>
</tr>
</tbody>
</table>

Sumber: Data olahan survei kajian rantai pasok material dan peralatan hijau

Penentuan responden survei pada kategori industri berdasarkan material yang dominan pada proyek konstruksi dan beberapa supplier material yang tergabung di dalam *green listing*. Daftar supplier material konstruksi yang tergabung di dalam *green listing* dapat dilihat pada Tabel 3.5.
Tabel 3.5 Daftar supplier material hijau berdasarkan *green listing*

<table>
<thead>
<tr>
<th>No</th>
<th>Kategori</th>
<th>Nama Produk</th>
<th>Nama Produsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water Efficiency</td>
<td>Toilet CW840J</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eco Washer TCW07S</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CW801PJ/SW801JP/SW880JP</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEN40AWV500</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desjoyaux Pools</td>
<td>PT. Megavektor Adikarya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero Flush</td>
<td>PT. Innovation Tech. Solution</td>
</tr>
<tr>
<td>2</td>
<td>Site Protection</td>
<td>EnviplastA</td>
<td>PT. Inter Aneka Lestari Kimia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stas MU</td>
<td>PT. Cipta Mortar Utama</td>
</tr>
<tr>
<td>3</td>
<td>Recycle Content</td>
<td>Knauf (Sistem Plafon & Partisi Gypsum)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Heradesign)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Cleaneo Linear)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf Gypsumboard</td>
<td>Knauf</td>
</tr>
<tr>
<td>4</td>
<td>Indoor</td>
<td>Energy Recovery Ventilator Recoupaerator</td>
<td>Tawada Clean Tech</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stainless Steel Insect Screens</td>
<td>PT. Onna Prima Utama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roller Blind Fabrics</td>
<td>Knauf</td>
</tr>
<tr>
<td>No</td>
<td>Kategori</td>
<td>Nama Produk</td>
<td>Nama Produsen</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Interior</td>
<td>Vassa Dining Chair</td>
<td>PT. Vivere Multi Kreasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenlam Safeguardsplus anti bacterial compact lami</td>
<td>Greenlam Compact laminate greenlame Asia Pacific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenlam High Pressure Laminate</td>
<td>Greenlam Compact laminate greenlame Asia Pacific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Everyday colour beginigs</td>
<td>Goodrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harmonious Balance</td>
<td>Goodrich</td>
</tr>
<tr>
<td>6</td>
<td>Energy efficiency</td>
<td>Bata Ringan Primacon</td>
<td>PT. Cipta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Heradesign)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Cleaneo Linear)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf Gypsumboard</td>
<td>Knauf</td>
</tr>
<tr>
<td>No</td>
<td>Kategori</td>
<td>Nama Produk</td>
<td>Nama Produsen</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>7</td>
<td>Architecture Material</td>
<td>Master seal</td>
<td>PT. BASF Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stealth 240SC-Anti Rayap</td>
<td>PT. BASF Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ucrete Series</td>
<td>PT. BASF Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iBrick Wall System</td>
<td>PT. Drymix Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodrich Wallcovering</td>
<td>Goodrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onduline, Genteng Onduvilla, Ondugreen</td>
<td>PT. Onduline Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b-panel</td>
<td>PT. Beton Elemindo Putra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nippon paint's green choice products</td>
<td>PT. Nipsea Paint and Chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lacobel-Varnished Glass</td>
<td>PT. Asahimas Flat Glass, Tbk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heatgard</td>
<td>PT. Inter Aneka Lestari Kimia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodrich Flooring</td>
<td>Goodrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alumnumium Unitized Curtain WallUCW 125</td>
<td>PT. YKK AP Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forbo</td>
<td>PT. Trade Indo Utama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desso</td>
<td>PT. Trade Indo Utama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Habitat Pixell</td>
<td>PT. Saranagriya Lestari Keramik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aqua Parquet Lack APL-851</td>
<td>PT. Propan Raya</td>
</tr>
</tbody>
</table>

Sumber: www.greenlistingindonesia.com
6.6. Jadual Survei

Tabel 3.6. Jadual pelaksanaan survei

<table>
<thead>
<tr>
<th>Kegiatan</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>1 Jakarta dan sekitarnya</td>
<td></td>
</tr>
<tr>
<td>2 Denpasar</td>
<td></td>
</tr>
<tr>
<td>3 Palembang</td>
<td></td>
</tr>
<tr>
<td>4 Balikpapan</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan

- ❑ Hari Sabtu dan Minggu
- ❑ Pelaksanaan survei

Sumber: Data olahan survei kajian rantai pasok material dan peralatan hijau
6.7. Pelaksanaan Survei

Industri yang dijadikan sebagai responden tentunya industri material yang memiliki dominasi di proyek konstruksi. Sebagai contoh baja, semen dan material lain yang masuk dalam *green listing*. Perlunya industri sebagai responden karena industri merupakan bagian hulu yang akan mensupply ke perusahaan dan proyek konstruksi. Responden berikutnya adalah perusahaan sebagai penentu kebijakan dalam penggunaan produk industri. Penentuan kebijakan berdasarkan dari spesifikasi yang akan digunakan di proyek konstruksi. Sebagai contoh, apakah proyek memberikan batasan penggunaan material yang harus ramah lingkungan dan sertifikasi, maka diperlukan kebijakan dalam pemilihan *supplier* material yang bersertifikasi. Responden pada level berikutnya adalah proyek. Proyek sebagai hilir pengguna produk yang dihasilkan dari industri. Tujuan dilakukan survei pada proyek adalah untuk mendapatkan gambaran bagaimana implementasi konsep hijau di lapangan terutama material dan pengelolaan alat berat.

6.7.1. Pelaksanaan Survei di Jakarta dan sekitarnya

6.7.2. Pelaksanaan Survei di Denpasar
Survei kedua dilakukan di kota Denpasar dilaksanakan pada tanggal 15-19 September 2013. Responden yang disurvei adalah beberapa proyek konstruksi yang sedang tahap konstruksi. Responden tersebut terdiri dari:

a. Proyek Pengembangan Bandara Internasional yang dilaksanakan oleh PT. Adhi Karya.
b. Renovasi Gedung Kedatangan Domestik yang dikelola oleh PT. Waskita KSO.
c. Rumah Sakit Jiwa Bangli yang dilaksanakan oleh PT. Hutama Karya
d. Hotel Mercure yang dilaksanakan oleh PT. Nusa Konstruksi Enjineering
e. Hotel Ritz Carlton yang dilaksanakan oleh PT. Multi Struktur

6.7.3. Pelaksanaan Survei di Palembang
Survei ketiga dilakukan di kota Palembang dilaksanakan pada tanggal 23-25 September 2013. Responden yang disurvei adalah beberapa proyek konstruksi yang sedang tahap konstruksi dan perusahaan BUMN. Responden tersebut terdiri dari:

a. Hotel Tune yang dilaksanakan oleh PT. Maju Mapan Bangsa Indo.
b. Hotel Amaris yang dikelola oleh PT. Prambanan Dwi Paka.
c. PT. Pembangunan Perumahan Divisi Sumatera

6.7.4. Pelaksanaan Survei di Balikpapan
Survei keempat dilakukan di kota Balikpapan bersamaan dengan survey di Palembang dilaksanakan pada tanggal 23-25 September 2013. Responden yang disurvei adalah beberapa proyek konstruksi yang sedang tahap konstruksi. Responden tersebut terdiri dari:

b. Gedung Parkir Bandara Sepinggan yang dilaksanakan oleh PT. Wika KSO.
c. Penta City Shopping Venue yang dilaksanakan oleh PT. Pembangunan Perumahan
d. Stadion Balikpapan yang dikelola oleh PT. Waskita Karya
e. Reklamasi Pantai Balikpapan dan Struktur Promanage yang dikelola oleh PT. Pembangunan Perumahan
3.8. Hasil Survei

Survei yang dilakukan dari beberapa kota, khususnya yang berada di level proyek memiliki karakteristik yang berbeda-beda. Sebagai contoh, PT. Pembangunan Perumahan (PT. PP) adalah satu-satunya kontraktor yang mendeklarasikan sebagai green contractor, namun di daerah di luar Jawa proyek yang sedang dikerjakan oleh PT. PP tidak semua menerapkan green construction. Namun manajemen internal PT. PP tetap menjalankan sistem green construction seperti audit yang selalu dilakukan secara berkala layaknya proyek yang dikerjakan proyek konstruksi hijau. Berikut ini hasil survei yang dilakukan pada beberapa responden:

3.8.1. Industri dan Perusahaan

Data responden yang berhasil dikumpulkan pada tingkat industri hanya di PT. Krakatau Steel. Sedangkan data responden dari supplier material lain belum dapat dikumpulkan. Adapun hasil yang diperoleh dari PT. Krakatau Steel adalah sebagai berikut:

Bagian I. Definisi Material dan Peralatan Hijau

Definisi material hijau: material yang diproses dengan menggunakan energi yang ramah lingkungan dan memenuhi spesifikasi dari standar yang digunakan oleh Krakatau Steel seperti SNI, JIS.

Bagi para supplier lokal juga di minta persyaratan bahwa transpotasi yang digunakan dalam pengiriman bahan baku scrap dan billet harus memiliki hasil uji emisi kurang dari 65%.
Bagian II. Manajemen Lingkungan Internal Perusahaan

Upaya untuk memproduksi material hijau sebenarnya merupakan inovasi internal. Upaya yang dilakukan:

a. Limbah yang berbentuk serbuk dikelola sebagai bahan baku produksi semen (dalam hal ini pengguna limbah tersebut digunakan oleh PT. Indo Semen)
b. Sisa-sisa produksi yang berbentuk fine sponge dibentuk seperti batu bata, kemudian diolah pada tahap steel making. Tujuan dari kegiatan ini untuk menciptakan zero waste.
c. Bekerja sama dengan PT. RMI Krakatau Karbonindo untuk pengeolaan karbon dioksida (CO₂) ke dalam CO₂ cair.
d. Melakukan pembaharuan teknologi, seperti penggantian bahan bakar minyak dengan penggunaan gas sebagai sumber energi pada semua proses produksi baja; penggunaan teknologi direct reduction plan (DRP)

Sedangkan yang berhubungan dengan sumber daya manusia untuk mendukung green material, PT. Krakatau secara berkala mengadakan training kepada semua karyawan. Bentuk training yang dilakukan seperti training cleaner production, program penilaian kinerja terhadap lingkungan. Selain itu, upaya untuk mendukung menghasilkan green material juga disampaikan melalui banner di setiap ruangan dan surat edaran kepada semua karyawan terhadap penggunaan utilitas peralatan.

Bagian III. Manajemen Lingkungan Eksternal Perusahaan

Bagi para supplier PT. Krakatau Steel harus memiliki persyaratan ISO 14001. Ini sebagai upaya yang dilakukan oleh PT. Krakatau Steel untuk menjamin bahwa produk yang dihasilkan dapat memenuhi green material.
Meskipun proses yang dilakukan oleh PT. Krakatau Steel dapat dikategorikan sebagai green industry, namun PT. Krakatau Steel belum mendeklarasikan produknya sebagai green material. Penjaminan produk hanya sebatas disertifikasi ISO 14001. Selain itu, PT. Krakatau Steel juga melakukan penilaian dari pihak eksternal untuk menjamin proses green industry. Sebagai contoh, dalam tiga tahun terakhir dari tahun 2010 sampai sekarang PT. Krakatau Steel mengikuti evaluasi green industry yang dilakukan oleh Kementrian Perindustrian dan Perdagangan.

Bagian IV. Pengembalian Investasi

Seperti yang telah diuraikan sebelumnya, PT. Krakatau Steel berusaha untuk mengelola bahan baku secara optimal. Hasil akhir dari produk diupayakan zero waste. Sebagai contoh:

a. Limbah yang berbentuk serbuk dikelola sebagai bahan baku produksi semen (dalam hal ini pengguna limbah tersebut digunakan oleh PT. Indo Semen)

b. Sisa-sisa produksi yang berbentuk fine sponge dibentuk seperti batu bata, kemudian diolah pada tahap steel making. Tujuan dari kegiatan ini untuk menciptakan zero waste.

c. Bekerja sama dengan PT. RMI Krakatau Karbonindo untuk pengeolaan karbon dioksida (CO₂) ke dalam CO₂ cair.

Bagian V. Desain Ramah Lingkungan

Produk yang dihasilkan oleh PT. Krakatau Steel telah mengarah pada prinsip ramah lingkungan. Bahan baku yang digunakan untuk menghasilkan produk diupayakan menjadi zero waste. Waste yang dihasilkan dari kegiatan tersebut dikelola dengan pihak ketiga sebagai contoh dengan PT. Indo Cement yang memanfaatkan serbuk biji besi.

Bagian VI. Rantai Pasok

Dalam pengadaan bahan mentah seperti scrap dan billet dilakukan dengan cara pembelian langsung dari para supplier. Kriteria yang ditetapkan oleh PT. Krakatau Steel adalah para supplier harus bersertifikasi ISO 14001. Dalam pengadaan bahan mentah ini, ada pihak lain yang memiliki peran serta yaitu adanya para broker yang sifatnya invisible. Sehingga harga bahan mentah dapat menjadi lebih tinggi dan akibatnya harga produksi menjadi mahal. Kemudian memberikan dampak yang kurang baik. Pada sisi lain, harga produk impor lebih
murah daripada produk PT. Krakatau Steel. Hal ini dimanfaatkan oleh para pesaing PT. Krakatau Steel untuk membeli produk impor dan menjual produk tersebut dibawah harga yang ditetapkan oleh PT. Krakatau Steel. Hal ini menjadi permasalahan yang siginifikan bagi PT. Krakatau Steel.

Permasalahan yang lain, adalah adanya perbedaan konsep limbah B3 yang ditetapkan oleh pemerintah. Standar limbah B3 yang ditetapkan oleh pemerintah lebih rigid dari standar internasional. Hal ini menjadi kendala bagi proses produksi PT. Krakatau Steel.

Bagian VI. Permasalahan dan Rekomendasi

Permasalahan lain yang dihadapi oleh PT. Krakatau Steel adalah perihal pengeluaran limbah. Untuk pengeluaran limbah diperlukan Surat Ijin Pengeluaran Ijin Limbah (SIPLI). SIPLI hanya ada di Cilegon saja, sedangkan di tempat lain tidak memiliki kebijakan tersebut.

Perubahan PP No. 19 Tahun 1999, tentang pengelolaan limbah bahan berbahaya dan beracun yang dituangkan kedalam Rencana Perubahan Peraturan Pemerintah, memuat beberapa jenis bahan berbahaya dan beracun yang semula tidak muncul di PP no. 19 tahun 1999, sekarang dimunculkan. PT. Krakatau Steel melakukan berbagai kajian dengan berbagai pakar untuk mendapatkan bukti ilmiah dasar perubahan tersebut dan belum mendapatakan.

Sedangkan di PT. Pembangunan Perumahan belum dapat diperoleh hasil yang signifikan. Pada awal survei, tim baru melakukan tahapan penjajahan untuk menggali informasi sampai sejauh mana konsep hijau diimplementasikan. Survei juga dilakukan di PT. Wijaya Karya, secara tidak langsung PT. Wijaya Karya telah berupaya untuk menjalankan konsep hijau seperti mengirimkan sumber daya untuk mengikuti sertifikasi green building council. Upaya
ini dilakukan untuk mempersiapkan para tenaga ahli yang dimiliki oleh PT. Wijaya Karya apabila ada permintaan owner untuk melaksanakan proyek yang hijau.

3.8.2. Proyek

Data responden yang berhasil dikumpulkan pada tingkat proyek berasal dari 3 kota yang telah disurvei antara lain Denpasar (lima responden), Balikpapan (lima responden), dan Palembang (tiga responden). Hasil survei diperoleh dari hasil survei ke 3 kota tersebut dapat yang dilakukan di Denpasar, Palembang dan Balikpapan adalah sebagai berikut:

A. Denpasar

A.1. Proyek Pengembangan Bandara Internasional Ngurah Rai

Bagian I. Definisi Green Construction

Sehingga pada setiap proyek yang dikerjakan, PT. Adhi Karya berupaya untuk memenuhi beberapa indikator green construction. Indikator green construction yang dipahami oleh PT. Adhi Karya adalah menyediakan ruang khusus bagi para pekerja yang merorok, work instruction yang dilakukan setiap minggu 1 kali pada hari Jumat. Audit terhadap lingkungan kerja yang dilakukan setiap hari terutama terhadap penggunaan alat pengaman diri. Apabila peringatan yang diberikan tidak dilaksanakan, maka akan ada pemotongan hasil opname.

Bagian II. Sumber dan Siklus Material

Usaha lain yang dilakukan PT. Adhi Karya untuk mewujudkan green construction pada proyek yang dikerjakan adalah menggunakan material bekas bangunan lama. Hal ini juga didukung dengan adanya permintaan dari owner untuk mendaur ulang dari material lama. Pada umumnya penggunaan material lama lebih banyak pada pekerjaan galian dan timbunan.
Selain itu, adanya Peraturan Daerah juga mengatur penggunaan material lokal seperti pemanfaatan pasir yang tidak terlalu jauh dari proyek. Tujuannya adalah untuk mengurangi tingkat polusi dari transportasi yang mengangkut pasir.

Penggunaan material prefabrikasi juga dilakukan oleh PT. Adhi Karya dengan tujuan mengurangi waste pada proyek yang sedang dikerjakan. Sebagai contohnya pagar bangunan menggunakan GRC. Sedangkan pengadaan material yang diperlukan di proyek, semua diadakan langsung oleh kontraktor. Sumber material terbesar dikirim dari Pulau Jawa.

Bagian III. Pengelolaan Alat Berat

Dalam pengelolaan alat berat pada proyek yang dikelola oleh PT. Adhi Karya juga dilakukan, seperti tenaga operator alat berat harus memiliki sertifikat yang diakui oleh Kementerian Tenaga Kerja. Semua truck yang mengangkut material harus ditutup dengan cover sehingga debu tidak beterbangan di sepanjang perjalanan. Menyediakan area untuk pencucian ban truck ready mix yang keluar masuk ke lokasi proyek. Uji emisi terhadap jenis alat berat yang digunakan di proyek belum dilakukan oleh PT. Adhi Karya.

Bagian IV. Permasalahan dan Rekomendasi

Permasalahan yang dihadapi oleh PT. Adhi Karya untuk mewujudkan green construction adalah budaya tersebut harus dibangun dari kesadaran diri sendiri. Ada atau tidak kebijakan dari owner ataupun pemerintah, budaya tersebut harus dibangun di setiap proyek. Rekomendasi yang diusulkan adalah green construction harus menjadi standar bagi semua proyek yang dikerjakan oleh kontraktor BUMN dan kontraktor swasta.

A.2. Proyek Renovasi Terminal Internasional Bandara Internasional Ngurah Rai

Bagian I. Definisi Green Construction

Proyek renovasi terminal internasional di bandara internasional Ngurah Rai dikelola oleh PT. Waskita Karya JO PT. Arkonin. Secara tidak langsung memang sudah dilakukan seperti penggunaan lampu hemat energi, pagar proyek yang digunakan beberapa kali, dan penggunaan kertas bekas untuk keperluan administrasi sebelum menjadi dokumen yang sah. Sehingga pemahaman terhadap konsep green construction belum dapat dirumuskan.
Untuk mencegah terjadinya kecelakaan kerja, PT. Waskita Karya senantiasa menginformasikan kepada personel yang ada di proyek. Safety morning adalah wadah untuk mengkomunikasikan kepada seluruh personel di proyek.

Bagian II. Sumber dan Siklus Material
Usaha untuk menggunakan material dari sisa bangunan lama juga dilakukan oleh PT. Waskita Karya. Penggunaan material dari sisa bangunan lama banyak digunakan pada pekerjaan timbunan dan galian.

Sedangkan pengadaan material yang diperlukan di proyek, semua diadakan langsung oleh kontraktor. Sumber material terbesar dikirim dari Pulau Jawa.

Bagian III. Pengelolaan Alat Berat
Pengelolaan alat berat dilakukan berdasarkan kebutuhan proyek. Sehingga dalam pengelolaan alat berat belum mempertimbangkan faktor-faktor yang mendukung terwujudnya konstruksi hijau.

Bagian IV. Permasalahan dan Rekomendasi
Permasalahan yang dihadapi oleh PT. Waskita Karya untuk mewujudkan green construction adalah budaya terhadap konstruksi hijau belum menjadi kebutuhan internal. Sehingga semua dikembalikan kepada masing-masing personel yang terlibat di proyek. Upaya untuk mensosialisasikan telah dilakukan tetapi baru sebatas dari pimpinan proyek kepada kepala proyek. Sosialisasi ini belum sampai pada tingkat operasional.

A.3. Proyek Pembangunan Hotel Mercure Legian

Bagian I. Definisi Green Construction
Proyek pembangunan Hotel Mercure Legian dilaksanakan oleh PT. Nusa Konstruksi Enjineering (PT. NKE). PT. NKE merupakan kontraktor swasta. Bagi PT. NKE konsep green construction merupakan konsep yang baru dan bahkan belum dipahami. Pada sisi lain, secara tidak langsung PT. NKE ada upaya untuk mengurangi penggunaan kayu pada beberapa pekerjaan seperti perancah sudah tidak menggunakan kayu tetapi menggunakan baja canal.
Untuk mencegah terjadinya kecelakaan kerja, PT. NKE senantiasa menginformasikan kepada personel yang ada di proyek. Safety talk adalah wadah untuk mengkomunikasikan kepada seluruh personel di proyek tentang keselamatan kerja.

Bagian II. Sumber dan Siklus Material
Usaha untuk menggunakan material dari sisa bangunan lama juga dilakukan oleh PT. NKE. Penggunaan material dari sisa bangunan lama banyak digunakan pada pekerjaan timbunan dan galian.

Sedangkan pengadaan material yang diperlukan di proyek, semua diadakan langsung oleh kontraktor. Sumber material terbesar dikirim dari Pulau Jawa khususnya dari kota Surabaya dan Jakarta.

Bagian III. Pengelolaan Alat Berat
Pengelolaan alat berat dilakukan berdasarkan kebutuhan proyek. Sehingga dalam pengelolaan alat berat belum mempertimbangkan faktor-faktor yang mendukung terwujudnya konstruksi hijau.

Bagian IV. Permasalahan dan Rekomendasi
Permasalahan yang dihadapi oleh PT. NKE untuk mewujudkan green construction adalah konsep terhadap green belum dipahami sehingga diperlukan sosialisasi dari Kementerian Pekerjaan Umum.

A.4. Proyek Pembangunan Ritz Carlton Ubud

Bagian I. Definisi Green Construction
Proyek pembangunan Hotel Ritz Carlton Ubud dilaksanakan oleh PT. JKS. Pada saat wawancara, dilayani oleh pihak manajemen konstruksi PT. Multi Struktur. Pengelola dan manajemen konstruksi dimiliki oleh swasta. merupakan kontraktor swasta. Proyek konstruksi yang dikerjakan oleh PT. JKS merupakan proyek konvensional. Desain konstruksi belum mempertimbangkan faktor kehijauan tetapi lebih menekankan terwujudnya green building. Sebagai contoh, penggunaan AC yang rendah kebutuhan energi dan penggunaan lampu LED

Bagian II. Sumber dan Siklus Material
Usaha untuk menggunakan material dari sisa bangunan lama juga dilakukan oleh PT. JKS. Penggunaan material dari sisa bangunan lama banyak digunakan pada pekerjaan timbunan dan galian.

Sedangkan pengadaan material yang diperlukan di proyek, semua diadakan langsung oleh kontraktor. Sumber material terbesar dikirim dari Pulau Jawa khususnya dari kota Surabaya.

Bagian III. Pengelolaan Alat Berat
Alat berat yang digunakan pada proyek merupakan kepemilikan sendiri, sehingga perawatan alat lebih terjamin. Pengendalian bahan bakar yang diperlukan oleh alat berat dilakukan secara rutin.

Bagian IV. Permasalahan dan Rekomendasi
Permasalahan yang dihadapi oleh PT. JKS untuk mewujudkan green construction adalah konsep terhadap green belum dipahami sehingga diperlukan sosialisasi dari Kementerian Pekerjaan Umum.

A.5. Proyek Pembangunan Rumah Sakit Jiwa Bangli

Bagian I. Definisi Green Construction
Proyek pembangunan Rumah Sakit Jiwa Bangli dilaksanakan oleh PT. Hutama Karya. Proyek pembangunan Rumah Sakit Jiwa berada di kawasan Bangli yang terdiri dari beberapa bangunan.
Konsep *green construction* merupakan hal yang dapat dipahami oleh PT. Hutama Karya. Berdasarkan informasi yang diperoleh, desain Rumah Sakit Jiwa Bangli diminta oleh *owner* menggunakan konsep *green*. Konsep yang dipahami oleh owner adalah menggunakan material lokal seperti batu bata bali. Selain pemanfaatan material lokal, owner juga meminta kepada kontraktor agar mematuhi budaya lokal sebagai contoh tidak diijinkan memindah posisi pohon. Jika ada desain yang bersilangan atau menabrak pohon maka, posisi bangunan harus diubah, bukan pohonnya yang ditebang.

Mengenai keselamatan kerja, PT. Hutama Karya setiap pagi melaksanakan *tool box meeting* kepada seluruh personel yang terlibat di proyek. *Tool box meeting* dilakukan sampai pada level tukang dengan tujuan untuk memberikan kesadaran arti pentingnya menggunakan alat pengaman diri. Untuk memonitor hasil *tool box meeting*, setiap hari ada bagian yang disebut *safety patrol*. Tugasnya mengingatkan kepada seluruh personel yang tidak menggunakan alat pengaman diri dan peduli terhadap lingkungan selama proses konstruksi.

Bagian II. Sumber dan Siklus Material

Penggunaan material dari sisa bangunan lama juga menjadi skala prioritas di dalam proses tahap konstruksi Rumah Sakit Jiwa Bangli. Material bekas yang digunakan adalah sisa dinding yang dirubuhkan digunakan sebagai timbunan.

Semua penggunaan material yang ramah lingkungan di atur oleh owner namun untuk pengadaannya dilakukan oleh kontraktor. Sumber material ada yang didatangkan dari luar pulau Bali sebagai contoh alumunium didatangkan dari Surabaya, genteng didatangkan dari Jakarta. Spesifikasi material tersebut juga ditentukan oleh *owner*.

Pemanfaatan material lokal, selain ditentukan oleh *owner* juga didukung oleh Peraturan Daerah untuk menggunakan material lokal misalkan bambu tidak perlu didatangkan dari luar pulau Bali. Hal ini didukung kondisi alam yang sangat memadai, tidak jauh dari Bangli terdapat suatu daerah sebagai penghasil bambu.

Bagian III. Pengelolaan Alat Berat

Dalam penggunaan alat berat pada proyek Rumah Sakit Jiwa Bangli, semua alat dalam kondisi baru. Semua alat berstatus milik sendiri. Dalam pengoperasian alat berat, khususnya...
truck ada sebuah Peraturan Daerah yang mewajibkan bahwa truck yang mengangkut material harus ditutup dengan terpal untuk menghindari debu beterbangan.

Dalam pengoperasian pekerjaan beton, PT. Hutama Karya juga menyediakan area untuk mencuci truck ready mix sebelum keluar dari lokasi proyek sehingga tidak mengotori lingkungan sekitarnya.

Bagian IV. Permasalahan dan Rekomendasi

Konsep *green construction* bagi PT. Hutama Karya sudah dibangun dari kesadaran diri sendiri/internal driven. Sehingga dalam pelaksanaan konstruksi tidak banyak keluhan terhadap implementasi konsep *green*. Namun demikian PT. Hutama Karya belum mendeklarasikan sebagai *green contractor*.

Gambar 3.2 Kondisi eksisting Rumah Sakit Jiwa Bangli
B. Palembang

B.1. Proyek Pembangunan Hotel Tune

Bagian I. Definisi Green Construction

Proyek pembangunan Hotel Tune yang berlokasi di daerah KM 3,5 dikerjakan oleh kontraktor PT. Majumapan Bangunindo. Kontraktor ini memiliki kantor pusat yang berlokasi di Jakarta Barat dan didirikan pada tahun 1993. Akan tetapi dalam pelaksanaan survei di Palembang, ternyata kontraktor ini mengerjakan proyek gedung highrise Hotel Tune. Dalam wawancara yang dilakukan dengan pihak PM (Project Manager) nya, berhasil di peroleh informasi bahwa kontraktor belum memahami apa itu green construction, bahkan mereka baru kali itu mendengar istilah tersebut.

Sehingga dapat disimpulkan bahwa dalam mengerjakan proyek ini, kontraktor tidak mempertimbangkan faktor-faktor green construction. Begitu juga dalam pemilihan material, kontraktor tidak memperhitungkan faktor-faktor green, karena persyaratan harga terendah, dan keinginan owner masih lebih diutamakan kontraktor.

Sumber: Dokumen proyek

Gambar 3.3 Kondisi eksisting Hotel Tune Palembang
Bagian II. Sumber dan Siklus Material

Sejalan dengan pengerjaan proyek, narasumber menceritakan bahwa sebagian besar kebutuhan material untuk rangka bangunan terutama besi, didatangkan dari Jawa yaitu dari Interworld Steel (fabrikator besi tulangan) yang berlokasi di Jakarta. Alasannya, karena pasokan besi hanya ada di Jawa, sedangkan untuk daerah Sumatra, besi juga dapat diperoleh dari Medan, tapi ongkosnya lebih mahal.

Untuk mendatangkan besi dari Jawa, mereka menggunakan ekspedisi darat, yang kemudian harus menyebrang melalui pelabuhan Merak – Bakahuni. Hal yang sama juga terjadi dengan material semen, dan material lainnya yang tidak ada pasokannya dari Sumatra.

Dalam pengerjaan proyek, ternyata kontraktor secara tidak langsung telah mengaplikasikan prinsip-prinsip green (keberlanjutan). Hal ini dapat dilihat dengan kenyataan di lapangan bahwa kontraktor ternyata memanfaatkan sisa material yang sudah tidak terpakai (waste) seperti sisa pengecoran dan sisa kayu untuk mengurangi limbah proyek. Sisa pengecoran dimanfaatkan untuk mengisi tanah urugan, dan membuat trotoar jalan, sementara sisa kayu tidak dibuang, melainkan dijual kepada tukang pengerja kayu untuk diolah menjadi mebel.

Selain itu dari keterangan kontraktor, dijelaskan bahwa material yang berkatergori hijau pada umumnya owner yang menentukan spesifikasi produk yang akan digunakan. Dan pada umumnya material berkatergori ini digunakan pada dinding, jendela, dan panel luar gedung.

Bagian III. Pengelolaan Alat Berat

Dalam penggunaan alat berat, kontraktor menyatakan bahwa mereka menggunakan alat berat yang tersedia di daerah setempat. Sebagian peralatan termasuk alat berat disewa dari beberapa supplier yang berlokasi di daerah setempat, selain karena harganya lebih murah ketimbang didatangkan dari Jawa, penerjaan proyek ini juga tidak menuntut penggunaan alat yang sifatnya khusus.

Dalam pemilihan supplier alat berat, kontraktor tetap mengutamakan supplier yang memberi penawaran terendah. Lain dari itu kontraktor mengaku belum memiliki kebijakan untuk melakukan uji emisi terhadap alat berat yang akan digunakan.
Bagian IV. Permasalahan dan Rekomendasi
Permasalahan yang dihadapi oleh PT. Majumapan Bangunindo antara lain terkait lamanya pengiriman material yang berasal dari Jawa bila melewati selat sunda. Menurut mereka material sering sekali terlambat datang, karena berbagai kejadian yang sering terjadi di pelabuhan Merak – Bakahuni. Mulai dari antiran yang panjang akibat kurangnya jumlah kapal yang digunakan untuk menyeberangkan kendaraan, hingga kendala-kendala teknis yang sering terjadi di pelabuhan. Lain dari itu material sering kekurangan stok di pasaran.

B.2. Proyek Pembangunan Hotel Amaris

Bagian I. Definisi Green Construction

Sehingga dapat disimpulkan bahwa dalam mengerjakan proyek ini, kontraktor tidak mempertimbangkan faktor-faktor green construction. Begitu juga dalam pemilihan material, kontraktor tidak memperhitungkan faktor-faktor green, karena persyaratan harga terendah, dan keinginan owner masih lebih diutamakan kontraktor.

Bagian II. Sumber dan Siklus Material
Sumber material untuk dalam pengerjaan proyek ini sebagian besar diperoleh dari daerah setempat, hanya besi saja yang didatangkan dari Jawa, yaitu dari Krakatau Steel. Alasannya, sebagian besar material diperoleh dari daerah sekitar adalah karena perbandingan harga yang tidak terlalu besar, meskipun memang harga di daerah setempat akan lebih mahal. Namun jika dilihat dari resiko yang akan dihadapi kontraktor, tetap lebih aman menggunakan material setempat.
Untuk mendatangkan besi dari Jawa, mereka menggunakan ekspedisi darat, yang kemudian harus menyebrang melalui pelabuhan Merak – Bakahuni. Hal yang sama juga terjadi dengan material semen, dan material lainnya yang tidak ada pasokannya dari Sumatra.

Dalam pengerjaan proyek, ternyata kontraktor secara tidak langsung telah mengaplikasikan prinsip-prinsip green (keberlanjutan). Hal ini dapat dilihat dengan kenyataan di lapangan bahwa kontraktor ternyata memanfaatkan sisa material yang sudah tidak terpakai (waste) seperti sisa pengecoran dan sisa kayu untuk mengurangi limbah proyek. Sisa pengecoran sering dimanfaatkan untuk digunakan dalam mencetak pot bunga, dan landasan pada tempat parkir. Sedangkan kayu sisa digunakan untuk dijual kepada kontraktor lokal yang membutuhkan kayu untuk keperluan scaffolding.

Penggunaan material hijau oleh kontraktor dalam proyek ini adalah dari jenis bata ringan, dan sejenis mortar sebagai perekat bata ringan tersebut. Kontraktor kurang begitu menyukai penggunaan material fabrikasi seperti dinding panel dalam pengerjaannya, karena material tersebut masih belum begitu familiar dengan tenaga kerja setempat, sehingga dapat berakibat proyek menjadi molor.

Bagian III. Pengelolaan Alat Berat
Dalam penggunaan alat berat, kontraktor menyatakan bahwa mereka menggunakan alat berat yang tersedia di daerah setempat. Sebagian peralatan termasuk alat berat disewa dari beberapa supplier yang berlokasi di daerah setempat, selain karena hargaanya lebih murah ketimbang didatangkan dari Jawa, penerjaan proyek ini juga tidak menuntut penggunaan alat yang sifatnya khusus.

Dalam pemilihan supplier alat berat, kontraktor tetap mengutamakan supplier yang memberi penawaran terendah. Lain dari itu kontraktor mengaku belum memiliki kebijakan untuk melakukan uji emisi terhadap alat berat yang akan digunakan.

Bagian IV. Permasalahan dan Rekomendasi
Permasalahan yang dihadapi oleh PT. Prambanan Dwipaka antara lain terkait lamanya pengiriman material yang berasal dari Jawa bila melewati selat sunda. Menurut mereka material sering sekali terlambat datang, karena berbagai kejadian yang sering terjadi di
pelabuhan Merak – Bakahuni. Antrian panjang sering kali menyebabkan pengiriman terganggu, terutama bila bertepatan dengan hari raya tertentu.

B.3. PT. Pembangunan Perumahan Divisi Sumatera

Bagian I. Definisi Green Construction

PT. Pembangunan Perumahan dikenal sebagai kontraktor yang pertama menerapkan praktik-praktik green dalam setiap pengerjaan konstruksinya. Dalam wawancara yang dilakukan dengan salah satu staf PT. PP yang juga telah memiliki sertifikasi oleh lembaga GBCI (lembaga green Indonesia), berhasil di peroleh informasi bahwa kontraktor telah memahami apa itu green construction, dan bahkan telah dapat mempraktikkan untuk proyek-proyek yang dikerjakan di luar Jawa.

Bagian II. Sumber dan Siklus Material

Dijelaskan bahwa untuk setiap proyek yang dikerjakan di luar Jawa, seperti di Sumatera ini, sebagian besar material didatangkan dari Jawa. Alasannya karena kontraktor telah terikat hubungan kerja sama dengan beberapa supplier material misalnya besi yang besar untuk menyuplai kebutuhan kontraktor selama setahun.

Hal ini dikenal dengan istilah kontrak payung, dimana supplier (biasanya fabrikator besi) berjanji akan menyuplai kebutuhan besi kontraktor selama setahun sejumlah volume tertentu. Sehingga besi yang digunakan untuk proyek-proyek baik di Jawa maupun di luar Jawa akan dipasok oleh supplier yang umumnya berlokasi di pulau Jawa.

Khusus untuk supplier material, kontraktor mengharuskan supplier memiliki minimal sertifikat ISO 14001. Dengan mengharuskan supplier memiliki persyaratan tersebut kontraktor mengaku telah mempertimbangkan prinsip-prinsip lingkungan yang telah tertuang dalam ISO 14001 tersebut.

Untuk mendatangkan besi dari Jawa, mereka menggunakan ekspedisi darat, yang kemudian harus menyebrang melalui pelabuhan Merak – Bakahuni. Hal yang sama juga terjadi dengan material semen, dan material lainnya yang tidak ada pasokannya dari Sumatra.

Bagian III. Pengelolaan Alat Berat
Kontraktor telah memiliki suatu kebijakan untuk senantiasa melakukan pencatatan secara berkala untuk daftar kepemilikan alat berat mereka. Juga dalam pengadaan alat berat jika hendak disewa untuk mengerjakan suatu proyek, kontraktor memiliki daftar ceklist untuk menentukan kelayakan suatu alat berat apakah akan digunakan. Ceklist tersebut meliputi kelengkapan surat-surat dari alat berat, kelengkapan surat untuk operator alat berat, sertifikat kompetensi dari operator dalam menjalankan alat berat, kondisi mesin, umur mesin, dan emisi gas yang dikeluarkan.

Kontraktor mengakui sampai saat ini persyaratan uji emisi memang belum ada dalam GBCI, tapi kontraktor berusaha untuk tetap menggunakan alat berat yang asap buangannya tidak begitu mencemari udara.

Dalam pemilihan supplier alat berat, kontraktor tetap mengutamakan supplier yang memberi penawaran terendah, dan telah memiliki sertifikat ISO 14001.

Bagian IV. Permasalahan dan Rekomendasi
Permasalahan yang dihadapi oleh PT. Pembangunan Perumahan Divisi Sumatera antara lain terkait lamanya pengiriman material yang berasal dari Jawa bila melewati selat sunda. Menurut mereka material sering sekali terlambat datang, karena berbagai kejadian yang sering terjadi di pelabuhan Merak – Bakahuni. Antrian panjang sering kali menyebabkan pengiriman terganggu, terutama bila bertepatan dengan hari raya tertentu.
C. Balikpapan

C.1. Proyek Pembangunan Rumah Sakit Umum Daerah Balikpapan

Bagian I. Definisi Green Construction

Proyek pembangunan Rumah Sakit Umum Daerah Balikpapan dilaksanakan oleh PT. Pembangunan Perumahan (PT. PP). PT. PP merupakan kontraktor yang mendeklarasikan sebagai *green contractor*. Namun tidak semua proyek yang dikerjakan memiliki konsep *green*. Kondisi semacam ini terjadi karena beberapa faktor seperti ketidaktahuan *owner* tentang konsep *green*, atau karena lokasi yang tidak memungkinkan untuk mewujudkan *green construction*.

Pada proyek Rumah Sakit Umum Daerah Balikpapan, ketidaktahuan owner dan lahan yang tidak memungkinkan untuk mewujudkan konsep *green construction*. Namun demikian standar manajemen internal PT. PP sebagai *green contractor* harus dijalankan. Sebagai contoh, *safety talk* harus dilakukan setiap pagi sebelum pekerjaan dimulai, menyediakan ruang bagi perokok, memisahkan tempat sampah yang dapat didaur ulang dan yang tidak dapat didaur ulang, penggunaan alat pengaman diri (APD) harus digunakan selama berada di proyek.

Audit internal terhadap keselamatan dan kesehatan kerja dan lingkungan (K3L) dilaksanakan secara berkala dan rutin untuk memastikan bahwa pemenuhan kriteria *green* pada tahap konstruksi terpenuhi.
Bagian II. Sumber dan Siklus Material

Mengingat terbatasnya lahan dan desain yang konvensional, maka penggunaan material dari sisa bangunan lama tidak memungkinkan.. Hampir 60% material yang digunakan material yang didatangkan dari luar proyek.

Upaya untuk memanfaatkan material lokal tetap menjadi prioritas, meskipun tidak semua dapat diperoleh. Pasir pasang dan batu bata merupakan material lokal yang digunakan pada proyek ini. Sedangkan kebutuhan semen atau beton ready mix didatangkan dari Palu.

Beberapa komponen bangunan juga menggunakan material prefabrikasi seperti kolom dan balok praktis. Pertimbangan menggunakan prefabrikasi karena waktu, lokasi dan tentunya mengurangi waste akibat penggunaan beton in situ.

Sumber: Dokumen proyek
Gambar 3.5 Pemanfaatan batu bata sebagai material lokal pada proyek RSUD Balikpapan

Bagian III. Pengelolaan Alat Berat

Kriteria yang ditetapkan oleh proyek yang dikelola oleh PT. Pembangunan Perumahan adalah usia alat harus dibawah 10 tahun. Uji emisi belum ditetapkan sebagai kriteria. Pemilihan alat berat didasarkan kepada fungsinya.

Kriteria lain yang ditetapkan adalah operator alat berat harus mempunyai sertifikat ijin operator yang dikeluarkan oleh Kementerian Tenaga Kerja.
Bagian IV. Permasalahan dan Rekomendasi

Permasalahan yang dihadapi oleh PT. PP pada proyek ini karena keterbatasan lahan. Usulan perlu sosialisasi konsep green kepada owner terutama di luar pulau Jawa. Minimnya informasi konstruksi hijau menjadi hambatan bagi owner untuk mengimplmentasikan konstruksi hijau.

C.2. Proyek Pembangunan Penta City Shopping Venue

Bagian I. Definisi Green Construction

Untuk mencegah terjadinya kecelakaan kerja, PT. NKE senantiasa menginformasikan kepada personel yang ada di proyek. Safety meeting adalah wadah untuk mengkomunikasikan kepada seluruh personel di proyek.

Sumber: Dokumen proyek

Gambar 3.6 Kondisi eksisting proyek Penta City Shopping Venue
Bagian II. Sumber dan Siklus Material

Usaha untuk menggunakan material dari sisa bangunan lama juga dilakukan oleh PT. NKE. Penggunaan material dari sisa bangunan lama banyak digunakan pada pekerjaan timbunan dan galian. Besarnya penggunaan material bekas mencapai 40%. Seperti yang diuraikan pada bagian sebelumnya, bahwa proyek ini bukan merupakan proyek green, maka tidak ada persyaratan khusus yang diminta oleh owner.

Pemanfaatan material lokal hanya digunakan untuk komponen non struktural tetapi untuk komponen struktur seperti beton, split dan semen didatangkan dari Palu. Material prefabrikasi juga digunakan pada proyek Penta City Shopping Venue seperti bata ringan. Sedangkan pengadaan material yang diperlukan di proyek, semua diadakan langsung oleh kontraktor. Sumber material terbesar dikirim dari Pulau Jawa khususnya dari kota Surabaya dan Jakarta.

Dalam pengadaan supplier material, PT. NKE menetapkan kebijakan bahwa para supplier harus memiliki sertifikasi ISO 14001.

Bagian III. Pengelolaan Alat Berat

Alat berat yang digunakan pada proyek ini berasal dari kepemilikan PT. NKE. Rata-rata usia alat yang digunakan pada proyek ini berusia 2-3 tahun. Namun apabila ada alat yang berusia lebih dari 3 tahun, maka PT. NKE akan melakukan kalibrasi dari pihak ketiga yaitu Lotain. Lotain merupakan badan kalibrasi dari Perancis.
Pengendalian terhadap limbah alat berat PT. NKE menyerahkan kepada pihak ketiga. Pihak ketiga ini merupakan perusahaan multinasional yang bergerak di bidang pengolahan limbah. Upaya lain untuk mengurangi emisi dari alat berat, PT. NKE selalu melakukan pengujian lingkungan akibat penggunaan alat berat.

Bagian IV. Permasalahan dan Rekomendasi

Permasalahan yang dihadapi oleh PT. NKE untuk mewujudkan *green construction* adalah konsep terhadap *green* belum dipahami oleh manajemen perusahaan PT. NKE. Selama ini *owner* memang masih sangat jarang menuntut proyek yang *green*. Usulan kepada para pihak terkait:

a. Perlu ditetapkan definisi *green construction*

b. Sosialisasi definisi *green construction* terutama di luar pulau Jawa
c. Jika sudah ada sosialisasi bagaimana mekanisme penilaian terhadap proyek yang dikerjakan

C.3. Proyek Reklamasi Pantai Balikpapan dan Struktur Promanage

Bagian I. Definisi Green Construction

Mengingat bahwa PT. PP merupakan *green contractor*, yang melaksanakan pekerjaan reklamasi pantai Balikpapan maka setiap 3 (tiga) bulan satu kali dan secara rutin dilakukan audit lingkungan dan analisa dampak terhadap lingkungan. Audit lingkungan yang dilakukan meliputi tingkat pencemaran marine yang terjadi, dan tingkat persentase biota laut yang tercemar akibat pekerjaan reklamasi pantai.

Audit internal terhadap keselamatan dan kesehatan kerja dan lingkungan (K3L) dilaksanakan secara berkala dan rutin untuk memastikan bahwa pemenuhan kriteria green pada tahap
konstruksi terpenuhi. Selain itu, safety talk harus dilakukan setiap pagi sebelum pekerjaan dimulai, menyediakan ruang bagi perokok, memisahkan tempat sampah yang dapat didaur ulang dan yang tidak dapat didaur ulang, penggunaan alat pengaman diri (APD) harus digunakan selama berada di proyek.

Sumber: Dokumen proyek

Gambar 3.8 Kondisi eksisting proyek Struktur Promanage

Sumber: Dokumen proyek

Gambar 3.9 Kondisi eksisting reklamasi pantai Balikpapan
Bagian II. Sumber dan Siklus Material

Penggunaan material dari sisa bangunan lama dilakukan pada proyek ini. Hampir 40% material yang digunakan material yang didatangkan dari luar proyek untuk pekerjaan timbunan. Sedangkan penggunaan material dari sisa bangunan, pada proyek ini juga ditetapkan penggunaan kayu harus lebih kecil dari 100m³.

Upaya untuk memanfaatkan material lokal tetap menjadi prioritas, meskipun tidak semua dapat diperoleh. Pasir pasang dan batu bata merupakan material lokal yang digunakan pada proyek ini. Sedangkan kebutuhan semen atau beton ready mix didatangkan dari Palu.

Beberapa komponen bangunan juga didesain menggunakan material prefabrikasi, hanya detailnya belum ditetapkan di dalam Rencana Kerja dan Syarat. Proyek ini merupakan proyek multi years sehingga untuk komponen struktur menunggu pada tahap berikutnya. Untuk mendukung daya dukung tanah, proyek menggunakan geotextile yang diimpor.

Bagian III. Pengelolaan Alat Berat

Kriteria yang ditetapkan oleh proyek yang dikelola oleh PT. Pembangunan Perumahan adalah usia alat harus dibawah 5 tahun. Uji emisi belum ditetapkan sebagai kriteria. Pemilihan alat berat didasarkan kepada fungsinya.

Kriteria lain yang ditetapkan adalah operator alat berat harus mempunyai sertifikat ijin operator yang dikeluarkan oleh Kementerian Tenaga Kerja.

Bagian IV. Permasalahan dan Rekomendasi

Permasalahan yang dihadapi oleh PT. PP pada proyek yang dikerjakan di luar pulau Jawa, adalah minimnya informasi dan pengetahuan green construction. Oleh karena itu perlu sosialisasi konsep green kepada owner terutama di luar pulau Jawa.

C.4. Proyek Pembangunan Gedung Parkir Bandara Sepinggan

Bagian I. Definisi Green Construction

Proyek pembangunan Gedung Parkir Bandara Sepinggan dilaksanakan oleh PT. Wika KSO PT. ISO Plan dan PT. Cipta. Proyek konstruksi yang dikerjakan oleh PT. Wika KSO PT. ISO

Bagian II. Sumber dan Siklus Material
Material yang digunakan tidak ada yang masuk dalam kategori material daur ulang atau sisa dari bangunan tempat lain. Upaya yang dilakukan baru pada tahap pemisahan sampah konstruksi yang bias di daur ulang dan yang tidak dapat di daur ulang. Untuk mengurangi waste di proyek, maka PT. Wika menggunakan material prefabrikasi seperti parapet.

Sedangkan pengadaan material yang diperlukan di proyek, semua diadakan langsung oleh kontraktor. Sumber material terbesar dikirim dari Pulau Jawa khususnya dari kota Surabaya. Pertimbangan dalam pemilihan supplier dilakukan berdasarkan harga yang optimal dan cepat terkirim.

Gambar 3.10 Kondisi eksisting proyek Gedung Parkir Bandara Sepinggan

Sumber: Dokumen proyek
Bagian III. Pengelolaan Alat Berat
Alat berat yang digunakan pada proyek merupakan alat yang disewa dari jasa peminjaman alat berat dan ada juga yang milik sendiri. Kriteria yang digunakan oleh PT. Wika KSO PT. ISO Plan dan PT. Cipta mengacu pada peraturan Depnaker dan peraturan yang merujuk pada penggunaan alat berat.

Bagian IV. Permasalahan dan Rekomendasi
Usulan kepada para pihak terkait:

a. Perlu ditetapkan definisi *green construction*
b. Sosialisasi definisi *green construction* terutama di luar pulau Jawa
c. Jika sudah ada sosialisasai bagaimana mekanisme penilaian terhadap proyek yang dikerjakan
d. Keterbatasan informasi supplier yang menyediakan material yang *green*.

C.5. Proyek Pembangunan Stadion Balikpapan

Bagian 1. Definisi *Green Construction*
Proyek pembangunan Gedung Parkir Bandara Sepinggan dilaksanakan oleh PT. Waskita Karya. Proyek konstruksi yang dikerjakan oleh PT. Waskita Karya merupakan proyek konvensional. Desain konstruksi belum mempertimbangkan faktor kehijauan tetapi lebih menekankan terwujudnya *green building*. Pemerintah Daerah Balikpapan sebagai *owner*

Untuk mencegah terjadinya kecelakaan kerja, PT. Waskita Karya senantiasa menginformasikan kepada personel yang ada di proyek. Safety meeting adalah wadah untuk mengkomunikasikan kepada seluruh personel di proyek.

Gambar 3.12 Kondisi eksisting proyek Stadion Balikpapan

Bagian II. Sumber dan Siklus Material

Usaha untuk menggunakan material dari sisa bangunan lama juga dilakukan oleh PT. Waskita Karya. Penggunaan material dari sisa bangunan lama banyak digunakan pada pekerjaan timbunan dan galian.

Pemanfaatan material lokal yang digunakan untuk komponen struktur seperti beton, split dan semen didatangkan dari Palu. Material prefabrikasi juga digunakan pada proyek Stadion Balikpapan seperti bata ringan dan tempat duduk tribun. Meningkat lokasi proyek memiliki
luas hamper 16 ha., maka beberapa komponen prefabricasi dibuat on site. Selain itu, pengadaan material yang diperlukan di proyek, semua diadakan langsung oleh kontraktor. Sumber material terbesar dikirim dari Pulau Jawa khususnya dari kota Surabaya dan Jakarta, terutama besi. Selain itu, ada juga material yang termasuk green akan diimpor dari Jerman yaitu kursi stadion dan genset dari Singapura. Genset ini tidak menimbulkan kebisingan. Pelaksanaan dari kedua material tersebut akan dikerjakan pada tahap berikutnya. Proyek ini merupakan proyek multi years sehingga focus dari tahap 1 hanya pada struktur.

Sumber: Dokumen proyek
Gambar 3.13 Penggunaan material prefabrikasi pada proyek Stadion Balikpapan
Bagian III. Pengelolaan Alat Berat

Alat berat yang digunakan pada proyek ini berasal dari kepemilikan PT. Waskita Karya. Kriteria pemilihan alat berat dipengaruhi oleh keamanan alat berhubungan dengan usia alat, hemat dan memiliki track record maintenance yang dilakukan secara berkala.

Pengendalian terhadap limbah alat berat PT. Waskita Karya dilakukan dengan oli bekas dicampur dengan serbuk gergaji kemudian dibakar, sehingga oli bekas yang digunakan alat berat tidak tercecer atau membutuhkan tempat khusus.

Bagian IV. Permasalahan dan Rekomendasi

Permasalahan yang dihadapi oleh PT. Waskita Karya untuk mewujudkan green construction adalah konsep terhadap green belum familiar. Sehingga ada beberapa usulan kepada para pihak terkait:

a. Perlu ditetapkan definisi green construction
b. Sosialisasi definisi green construction terutama di luar pulau Jawa
c. Jika sudah ada sosialisasai bagaimana mekanisme penilaian terhadap proyek yang dikerjakan

Berdasarkan uraian diatas, maka dapat dirangkum ke dalam suatu tabel yang berisi ringkasan dari hasil survei dari masing-masing kategori yang menghubungkan setiap item pertanyaan dengan masing-masing responden.
Tabel 3.7 Ringkasan hasil survei pada kategori industri dan perusahaan

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Item Pertanyaan</th>
<th>Responden - Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I 1</td>
<td>Jakarta</td>
</tr>
<tr>
<td>Industri &</td>
<td>Definisi material & peralatan hijau</td>
<td>Penggunaan energi yang ramah lingkungan & memenuhi standar yang telah ditetapkan</td>
</tr>
<tr>
<td>Perusahaan</td>
<td>II Manajemen lingkungan internal perusahaan</td>
<td>Limbah diminimalkan dengan cara bekerja sama dengan pihak ketiga dan menjadi bahan baku bagi pihak ketiga</td>
</tr>
<tr>
<td></td>
<td>III Manajemen lingkungan eksternal perusahaan</td>
<td>Belum mendeklarasikan sebagai green industry meskipun di dalam prosesnya telah menjalankan konsep green</td>
</tr>
<tr>
<td></td>
<td>IV Pengembalian investasi</td>
<td>Limbah yang diserahkan pihak ketiga mempunyai nilai uang</td>
</tr>
<tr>
<td></td>
<td>V Desain ramah lingkungan</td>
<td>Produk yang dihasilkan sudah memenuhi upaya menuju green industri</td>
</tr>
<tr>
<td></td>
<td>VI Rantai Pasok</td>
<td>Harga impor lebih murah daripada membeli produk nasional</td>
</tr>
<tr>
<td></td>
<td>VII Permasalahan dan rekomendasi</td>
<td>Kebijakan yang kurang mendukung terhadap industri nasional</td>
</tr>
</tbody>
</table>

Sumber: Olahan hasil survei, 2013
Tabel 3.8 Ringkasan hasil survei pada kategori proyek di Denpasar

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Item Pertanyaan</th>
<th>Responden dan Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A1 Denpasar</td>
</tr>
<tr>
<td>I</td>
<td>Definisi green construction</td>
<td>Penggunaan material ramah lingkungan, keselamatan kerja dan metode pelaksanaan yang efisien</td>
</tr>
<tr>
<td>II</td>
<td>Sumber & siklus material</td>
<td>Menggunakan material bekas bangunan, menggunakan material lokal dan menggunakan material prefabrikasi</td>
</tr>
<tr>
<td>III</td>
<td>Pengelolaan alat berat</td>
<td>Alat dan operator memenuhi standar terkait, adanya uji emisi, mengurangi waste dari alat berat yang berpotensi mengganggu lingkungan</td>
</tr>
<tr>
<td>IV</td>
<td>Permasalahan dan rekomendasi</td>
<td>Budaya green harus dibangun dari kesadaran diri sendiri atau internally driven, green construction harus menjadi standar bagi kontraktor BUMN dan swasta</td>
</tr>
</tbody>
</table>

Sumber: Olahan hasil survei, 2013
I. Definisi green construction
Konsep green construction belum dapat dipahami

II. Sumber & siklus material
Penggunaan material sisa bangunan dari tempat lain untuk galian dan timbunan

III. Pengelolaan alat berat
Pengelolaan alat berdasarkan kebutuhan belum ada penetapan kriteria

IV. Permasalahan dan rekomendasi
Perlu sosialisasi konsep green construction

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Item Pertanyaan</th>
<th>Responden dan Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A3</td>
</tr>
<tr>
<td>Proyek</td>
<td>I. Definisi green construction</td>
<td>Konsep green construction belum dapat dipahami</td>
</tr>
<tr>
<td></td>
<td>II. Sumber & siklus material</td>
<td>Penggunaan material sisa bangunan dari tempat lain untuk galian dan timbunan</td>
</tr>
<tr>
<td></td>
<td>III. Pengelolaan alat berat</td>
<td>Pengelolaan alat berdasarkan kebutuhan belum ada penetapan kriteria</td>
</tr>
<tr>
<td></td>
<td>IV. Permasalahan dan rekomendasi</td>
<td>Perlu sosialisasi konsep green construction</td>
</tr>
</tbody>
</table>

Sumber: Olahan hasil survei, 2013
Definisi green construction
Pemanfaatan material lokal dan patuh pada budaya lokal

Sumber & siklus material
Pemanfaatan material bekas bangunan, material lokal (bambu), alumunium (Surabaya), genteng (Jakarta)

Pengelolaan alat berat
Alat milik sendiri memudahkan pengelolaan alat berat

Permasalahan dan rekomendasi
Belum mendeklarasikan sebagai green contractor

<table>
<thead>
<tr>
<th>Item Pertanyaan</th>
<th>Responden - Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definisi green construction</td>
<td>Pemanfaatan material lokal dan patuh pada budaya lokal</td>
</tr>
<tr>
<td>Sumber & siklus material</td>
<td>Pemanfaatan material bekas bangunan, material lokal (bambu), alumunium (Surabaya), genteng (Jakarta)</td>
</tr>
<tr>
<td>Pengelolaan alat berat</td>
<td>Alat milik sendiri memudahkan pengelolaan alat berat</td>
</tr>
<tr>
<td>Permasalahan dan rekomendasi</td>
<td>Belum mendeklarasikan sebagai green contractor</td>
</tr>
</tbody>
</table>

Sumber: Olahan hasil survei, 2013
Tabel 3.9 Ringkasan hasil survei pada kategori proyek di Palembang

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Item Pertanyaan</th>
<th>Responden - Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B1 Palembang</td>
</tr>
<tr>
<td>Proyek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Definisi green construction</td>
<td>Konsep green construction belum dapat dipahami</td>
</tr>
<tr>
<td>II</td>
<td>Sumber & siklus material</td>
<td>Supply material terutama baja diperoleh dari pulau Jawa khususnya Jakarta</td>
</tr>
<tr>
<td>III</td>
<td>Pengelolaan alat berat</td>
<td>Alat berat disewa dari lokasi setempat, harga menjadi pertimbangan</td>
</tr>
<tr>
<td>IV</td>
<td>Permasalahan dan rekomendasi</td>
<td>Pengadaan material dari Jawa ke lokasi, perlu sosialisasi konsep green</td>
</tr>
</tbody>
</table>

Sumber: Olahan hasil survei, 2013
<table>
<thead>
<tr>
<th>Item Pertanyaan</th>
<th>Responden - Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B3</td>
</tr>
<tr>
<td></td>
<td>Palembang</td>
</tr>
<tr>
<td>I Definisi green construction</td>
<td>Konsep green dapat dipahami dan terdefinisi</td>
</tr>
<tr>
<td>II Sumber & siklus material</td>
<td>Supply material terutama baja diperoleh dari pulau Jawa khususnya Jakarta</td>
</tr>
<tr>
<td>III Pengelolaan alat berat</td>
<td>Pengelolaan alat berat dilakukan secara rutin yang meliputi status alat, kalibrasi, kondisi alat</td>
</tr>
<tr>
<td>IV Permasalahan dan rekomendasi</td>
<td>Pengiriman material sering mengalami keterlambatan</td>
</tr>
</tbody>
</table>

Sumber: Olahan hasil survei, 2013
Tabel 3.10 Ringkasan hasil survei pada kategori proyek di Balikpapan

<table>
<thead>
<tr>
<th>Item Pertanyaan</th>
<th>Responden - Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>Balikpapan</td>
</tr>
<tr>
<td>I Definisi green construction</td>
<td>Konsep green dapat dipahami dan terdefinisi</td>
</tr>
<tr>
<td></td>
<td>Konsep green belum dapat dipahami, karena memang belum pernah mengerjakan proyek yang green</td>
</tr>
<tr>
<td>II Sumber & siklus material</td>
<td>Supply material diperoleh dari Palu terutama untuk komponen struktur</td>
</tr>
<tr>
<td></td>
<td>Supply material diperoleh dari Palu terutama untuk komponen struktur</td>
</tr>
<tr>
<td>III Pengelolaan alat berat</td>
<td>Usia alat yang digunakan harus berusia 10 tahun, uji emisi belum ditetapkan</td>
</tr>
<tr>
<td></td>
<td>Alat yang digunakan berusia 2-3 tahun, pemeliharaan alat kontinue dan kalibrasi terhadap alat yang sudah berusia lebih dari 3 tahun</td>
</tr>
<tr>
<td>IV Permasalahan dan rekomendasi</td>
<td>Perlu sosialisasi konsep green kepada owner khususnya di luar pulau Jawa</td>
</tr>
<tr>
<td></td>
<td>a. Perlu ditetapkan definisi green construction</td>
</tr>
<tr>
<td></td>
<td>b. Sosialisasi definisi green construction terutama di luar pulau Jawa</td>
</tr>
<tr>
<td></td>
<td>c. Jika sudah ada sosialisasi bagaimana</td>
</tr>
</tbody>
</table>

Sumber: Olahan hasil survei, 2013
I. Definisi green construction
Konsep green dapat dipahami dan terdefinisi
Konsep green construction belum dipahami, pemahaman baru pada tahap green building

II. Sumber & siklus material
Supply material diperoleh dari Palu terutama untuk komponen struktur
Supply material diperoleh dari Surabaya

III. Pengelolaan alat berat
Usia alat yang digunakan harus berusia 10 tahun, uji emisi belum ditetapkan
Alat berat diperoleh dengan cara rental, pemilihan didasarkan pada peraturan yang berlaku pada umumnya

IV. Permasalahan dan rekomendasi
Perlu sosialisasi konsep green kepada owner khususnya di luar pulau Jawa
a. Perlu ditetapkan definisi green construction
b. Sosialisasi definisi green construction terutama di luar pulau Jawa
c. Jika sudah ada sosialisasai bagaimana

Sumber: Olahan hasil survei, 2013
4.1. Material Berkelanjutan dan Produk Berkelanjutan

Untuk mewujudkan konstruksi yang berkelanjutan tentunya diperlukan dukungan sumber daya yang berkelanjutan juga seperti material. Adapun material berkelanjutan yang dimaksud lazimnya disebut dengan green material. Namun demikian dalam mewujudkan konstruksi yang berkelanjutan masalah yang dihadapi adalah bagaimana menentukan kriteria dari green material dan green product. Sampai sekarang, (Kibert, 2005) belum ada kesepakatan terhadap definisi green material dan green product.

Istilah green material dan green product memiliki persepsi bahwa keduanya memiliki performance yang tinggi. Di Amerika jenis green material dan green product diberi label environmentally preferable products (EEP). Setiap jenis material dan produk yang berlabelkan EEP dapat dipastikan termasuk kategori green.

The Greenguard Environmental Institute memberikan batasan bahwa green product dinyatakan dengan berapa banyak dampak kimia dari suatu produk terhadap indoor environmental quality (IEQ) (Kibert, 2005). Berdasarkan kedua contoh di atas, ada kata kunci yang melekat pada green material dan green product yaitu seberapa besar dampak terhadap lingkungan disekitarnya.

Di Indonesia, upaya untuk menerapkan menuju green material dan green product telah dimulai dengan ditetapkannya Peraturan Pemerintah No.102 Tahun 2000 Tentang Standardisasi Nasional disebutkan bahwa salah satu tujuan standardisasi nasional adalah meningkatkan perlindungan konsumen, pelaku usaha dan masyarakat untuk keselamatan, kesehatan maupun pelestarian fungsi lingkungan hidup. Realisasi dari Peraturan Pemerintah No. 102 tahun 2000, ISO 14001 diadop sebagai dasar standar bagi semua industri dalam menghasilkan produk. Tujuannya adalah untuk mengukur dampak terhadap lingkungan akibat dari kegiatan industri tersebut.

Tindak lanjut untuk mewujudkan green material dan green product, seringkali ada sebuah tuntutan yang membuktikan bahwa material dan produk termasuk kategori

Tabel 4.1. Jumlah sertifikat ekolabel yang telah diterbitkan

<table>
<thead>
<tr>
<th>No.</th>
<th>Negara</th>
<th>Jumlah Standar/Kriteria</th>
<th>Jumlah Sertifikat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>China</td>
<td>86</td>
<td>40.000</td>
</tr>
<tr>
<td>2.</td>
<td>Jepang</td>
<td>48</td>
<td>5.004</td>
</tr>
<tr>
<td>3.</td>
<td>Amerika Serikat</td>
<td>32</td>
<td>3.600</td>
</tr>
<tr>
<td>4.</td>
<td>Selandia Baru</td>
<td>31</td>
<td>1.750</td>
</tr>
<tr>
<td>5.</td>
<td>Singapura</td>
<td>61</td>
<td>1.500</td>
</tr>
<tr>
<td>6.</td>
<td>Swedia</td>
<td>10</td>
<td>611</td>
</tr>
<tr>
<td>7.</td>
<td>Thailand</td>
<td>48</td>
<td>506</td>
</tr>
<tr>
<td>8.</td>
<td>Ukraina</td>
<td>35</td>
<td>310</td>
</tr>
<tr>
<td>9.</td>
<td>Israel</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>10.</td>
<td>Malaysia</td>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>11.</td>
<td>Filipina</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>12.</td>
<td>Indonesia</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>13.</td>
<td>Rusia</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>

Salah satu tantangan tersebut adalah penggunaan material yang tidak hanya harus ramah lingkungan, tapi juga harus mengedepankan prinsip keberlanjutan dalam konstruksi berkelanjutan. Selain itu menurut hasil penelitian yang dilakukan oleh Glavinich (2008), material konstruksi menyumbangkan sekitar 70% dari biaya konstruksi. Jika ditarik kebelakang, maka harus didefinisikan terlebih dahulu apa yang dimaksud dengan material konstruksi yang berkelanjutan, dan aspek berkelanjutan (green) yang dimiliki oleh material tersebut.

Seperti yang telah dijelaskan pada bagian sebelumnya, bagian ini akan menjelaskan secara lebih spesifik mengenai material dan peralatan konstruksi berkelanjutan. Hasil
survei yang telah dilakukan pada beberapa responden di sepanjang rantai pasok material maupun peralatan konstruksi berkelanjutan di Indonesia adalah sebagai berikut:

Definisi material berkelanjutan

- Menurut Kementrian Lingkungan Hidup dalam Permen LH No. 8 tahun 2010 tentang Kriteria dan Sertifikasi Bangunan Ramah Lingkungan, menyebutkan bahwa material konstruksi berkelanjutan adalah material yang telah bersertifikat eco-label, dan material bangunan lokal (dalam negeri).

 Saat ini seluruh material konstruksi yang telah bersertifikat ekolabel, memperoleh sertifikat dari berbagai lembaga eco-label independent di luar negeri. Untuk kondisi di Indonesia, lembaga yang secara resmi memberikan sertifikat ekolabel belum sampai memberikan material konstruksi.

- Menurut pihak Industri (Produsen Material), mendefinisikan bahwa material konstruksi berkelanjutan adalah material yang diproses dengan menggunakan energi yang ramah lingkungan dan memenuhi spesifikasi dari standar yang digunakan.

- Menurut pihak Suplier Material, mendefinisikan bahwa material konstruksi berkelanjutan adalah material yang dapat memberikan nilai tambah dalam efisiensi penggunaan sumber daya alam pada tahap operasional bangunan.

 Selain itu ada juga suplier yang mendefinisikan material konstruksi berkelanjutan sebagai material yang bahan mentahnya sebagian menggunakan material yang recycling, dan proses produksi yang ramah lingkungan.

- Menurut pihak Kontraktor, mendefinisikan bahwa material konstruksi berkelanjutan adalah material yang dapat menekan biaya operasional bangunan lebih baik ketimbang material konstruksi konvensional.

 Selain itu material konstruksi berkelanjutan tidak menggunakan bahan-bahan berbahaya yang dapat memberikan dampak negatif pada lingkungan sekitar dan pada manusia pada saat proses produksi. Lebih lanjut material konstruksi berkelanjutan tidak boleh mengandung bahan-bahan berbahaya yang dapat memberikan dampak negatif pada manusia dan lingkungan sekitar.
Menurut pihak Owner (pemilik gedung), mendefinisikan bahwa material konstruksi berkelanjutan adalah material yang dapat membantu meningkatkan tingkat efisiensi terhadap penggunaan energi pada saat operasional bangunan dan tidak memberikan dampak negatif yang dapat membahayakan lingkungan dan mahkluk hidup.

Berdasarkan beberapa pendapat yang diberikan oleh masing-masing responden yang juga mewakili setiap pihak dalam rantai pasok material konstruksi berkelanjutan, dapat diambil suatu rumusan bahwa yang dimaksud dengan material konstruksi berkelanjutan adalah material yang tidak memberikan dampak negatif terhadap lingkungan dengan karakteristik sebagai berikut,

- Material berkelanjutan adalah
- Kriteria material berkelanjutan:
- Memiliki pengakuan dalam bentuk ekolabel dari pihak independen dan legal
- Menggunakan material lokal
- Memiliki kandungan material daur ulang
- Dalam prosesnya, menggunakan energi baru terbarukan (EBT) atau energi yang ramah lingkungan
- Didukung dengan teknologi ramah lingkungan
- Tidak mengandung B3
- Memiliki value dalam operasional

4.2. Peralatan Berkelanjutan

Seperti proyek pada umumnya, alat berat juga memiliki daur hidup. Seperti yang digambarkan pada Gambar II.3, daur hidup alat berat dimulai dari ekstraksi material yang didapat dari alam yang kemudian dilanjutkan ke proses manufaktur dari elemen-elemen perakitan alat berat. Setelah dirakit dan menjadi alat berat yang utuh, alat-alat itu didistribusikan ke proyek yang membutuhkan. Setelah digunakan, alat-alat berat dipelihara agar dapat digunakan kembali untuk proyek-proyek selanjutnya, atau dibuang ketika alat tidak dapat digunakan lagi.
Peralatan konstruksi adalah kontributor utama dalam polusi diesel yang berbahaya. Menurut US EPA *Clean Air Act Advisory Committee*, 1 buah mesin *bulldozer* menghasilkan sejumlah zat partikulat dan oksida nitrogen (NOx) yang jumlahnya melebihi zat yang dikeluarkan lebih dari 500 mobil. Karena pembuangan uap diesel mengandung karsinogen (zat pemicu kanker), zat partikulat berbahaya, dan senyawa pembentuk asbut di ozon, peralatan konstruksi yang menggunakan diesel membahayakan lingkungan sekitarnya karena dapat menyebabkan asma, kanker paru-paru, serangan jantung, bahkan kematian. Oleh karena itu, diharapkan konsep penggunaan alat berat dapat diarahkan menjadi lebih berkelanjutan.

Menurut Adiwoso (2013), dalam melaksanakan proses konstruksi berkelanjutan, peralatan yang digunakan harus memenuhi kriteria sebagai berikut:

1. Mudah proses pengirimannya dan hemat sumber daya.
2. Tidak menggunakan energi yang besar atau menghasilkan gas buang di area proyek.
3. Terbuat dari bahan yang dapat dipakai ulang dan tidak menghasilkan sampah.
4. Tidak memakan tempat dalam pengiriman dan penyimpanan.
5. Dapat dipergunakan kembali untuk kegiatan konstruksi selanjutnya (proses pengisian dan pencetakan sistem struktur).

Ketika dikaitkan dengan konstruksi berkelanjutan, kontraktor sebagai pengguna harus menggunakan alat-alat tersebut dengan perencanaan dan strategi yang matang agar dapat
mengatur energi yang digunakan sedemikian rupa sehingga meminimalisasi pencemaran lingkungan yang diakibatkan gas buang.

Menurut HINABI (2013), saat ini tengah dikembangkan inovasi terhadap produk alat berat yang digunakan konstruksi Indonesia untuk mendukung konstruksi berkelanjutan. Pengembangan produk alat berat adalah sebagai berikut:

1. Menggunakan mesin yang memiliki kadar emisi gas buang rendah sesuai dengan regulasi baku mutu emisi gas buang Indonesia.
2. Meningkatkan fitur keselamatan bagi operator yang memenuhi standar FOPS (Falling Object Protective Structure) dan ROPS (Roll Over Protective Structure).
3. Menggunakan teknologi tracking system untuk mengetahui posisi dan kondisi operasi dari alat berat tanpa harus berada di lokasi proyek.
4. Menggunakan teknologi hybrid untuk menghemat bahan bakar, contohnya dengan memanfaatkan energi listrik dan bahan bakar fosil.
5. Memenuhi kebutuhan alat berat yang memiliki aplikasi khusus (Special Machine Application).

Sedangkan berdasarkan hasil survei yang dilakukan pada salah satu produsen alat berat, konsep peralatan yang berkelanjutan telah dilakukan. Upaya untuk mewujudkan peralatan berkelanjutan telah dimulai dari bagian hulu yaitu peralatan dibuat dari sisa baja yang sudah tidak digunakan lagi. Sisa baja yang dimaksud adalah bukan scrap tetapi sisa dari manufaktur yang tidak dapat dimanfaatkan lagi. Sisa baja ini diperoleh dengan cara impor. Selain itu, pada bagian mesin alat berat juga telah diupayakan untuk menuju peralatan yang berkelanjutan. Produsen memiliki kebijakan bahwa alat yang telah berproduksi dengan jam layanan 52.000 jam, pengguna akan diberi tawaran alat akan diremanufakturing atau diganti mesin yang baru. Selama proses remanufakturing atau penggantian mesin alat berat, maka produsen akan memberikan mesin pengganti sementara sehingga tidak mengganggu kegiatan yang sedang berlangsung.

Inovasi yang dilakukan untuk mewujudkan peralatan yang berkelanjutan direalisasikan dengan memproduksi alat berat yang disebut dengan hybrid. Alat berat hybrid ini menggunakan dua macam sumber energi yaitu bio-solar dan automatic. Energi bio-solar akan digunakan oleh alat berat pada saat melakukan pengerukan, pemindahan, pengangkatan
namun pada saat bermanuver maka alat berat tidak akan menggunakan bio-solar tetapi fasilitas automaticnya.

Berdasarkan hasil survei dan kajian literatur, definisi peralatan berkelanjutan dapat dirumuskan sebagai berikut:

- Peralatan berkelanjutan adalah alat yang dioperasikan dan tidak memberikan dampak negatif terhadap lingkungan.

- Kriteria alat berkelanjutan meliputi:
 - Menggunakan mesin yang memiliki kadar emisi gas buang rendah sesuai dengan regulasi baku mutu emisi gas buang Indonesia.
 - Meningkatkan fitur keselamatan
 - Menggunakan teknologi *hybrid* untuk menghemat bahan bakar.
 - Memiliki kemampuan untuk diremanufacturing
 - Memiliki kandungan bahan daur ulang
5.1. Demand Material Berkelanjutan

Industri konstruksi khususnya di Indonesia termasuk dalam kategori sebagai negara yang responsive terhadap penyelenggaraan konstruksi di dunia. Dengan dimulainya era *green construction*, fokus penyelenggaraan infrastruktur dewasa ini tidak saja hanya memfokuskan perhatiannya pada aspek sosial dan ekonomi, namun juga aspek lingkungan hidup.

Bersamaan dengan hal tersebut, kebutuhan akan material dan peralatan konstruksi berkelanjutan dalam mendukung konsep konstruksi berkelanjutan menjadi suatu isu yang siap atau tidak siap, harus disadari kebutuhannya. Kebutuhan terhadap material berkelanjutan tentunya memiliki segmentasi tersendiri. Artinya kebutuhannya lebih banyak didominasi oleh beberapa bangunan yang memang didesain sebagai *green building*. Kebutuhan memang belum banyak tetapi potensi menunjukkan adanya tren yang terus meningkat.

Sebagaimana diketahui, di Indonesia pada bulan April tahun 2013 ini, kota Jakarta telah menerapkan wajib Green Building Codes yang dimaksudkan untuk mendorong pembangunan gedung hemat energi. Hal itu sesuai dengan Standar Nasional Indonesia
(SNI) untuk Bangunan Energi Efisien melalui pengembangan kode bangunan energi yang efisien dan pengembangan piranti lunak desain bangunan hemat energi.

Pada sisi yang lain, kebutuhan material keberlanjutan, sebenarnya juga telah terdapat banyak bangunan di daerah yang menganut local wisdom (kebijaksanaan/adat setempat) yang sudah menganut prinsip-prinsip bangunan hijau, ramah lingkungan, dan berkelanjutan. Sebagai contoh beberapa bangunan yang berada di Bali.

5.1.1. Jenis Material Berkelanjutan

Jenis material dan peralatan konstruksi berkelanjutan yang sampai saat ini diperoleh dari hasil survei yang terdaftar di Indonesia dapat dibagi menjadi 2 kategori utama yaitu, kategori pertama adalah material konstruksi, dan kategori kedua adalah peralatan konstruksi.

5.1.2. Material Konstruksi Berkelanjutan Berdasarkan Green Listing

Kategori pertama adalah material konstruksi. Jenis material yang diuraikan pada bagian ini diperoleh dari hasil survey ke beberapa perusahaan yang terdaftar dalam Green Listing Indonesia, suatu lembaga independent yang memberikan informasi terkait produk-produk material yang telah berkategori green di Indonesia. Semua jenis material yang dijabarkan dalam bagian ini merupakan jenis material yang sudah ada produusennya, dan telah berkategori green (ramah lingkungan). Adapun identitas dari pihak-pihak yang memproduksi material dibawah ini dapat dilihat pada Green Listing Indonesia, data dari Kementrian Perindustrian, dan data dari Kementrian Pekerjaan Umum.

Material konstruksi terbagi menjadi beberapa jenis antara lain,

- Material Struktur bangunan
Merupakan material utama penyusun rangka suatu bangunan. Material dalam kategori ini sudah menerapkan prinsip ramah lingkungan dalam proses pembuatannya, dan material dapat di daur ulang. Adapun yang termasuk dalam kategori ini antara lain, Semen/ Mortar, Besi Baja, Bata Ringan, Dinding Panel.

- **Material Arsitektur**

Merupakan material yang digunakan untuk meningkatkan nilai estetika dari suatu bangunan. Material dalam kategori ini telah menerapkan prinsip ramah lingkungan dalam proses pembuatannya, dan diklaim tidak memberikan dampak negatif pada lingkungan sekitar dan mahkluk hidup. Yang termasuk dalam kategori ini antara lain, Cat Dinding, Papan Gypsum, Kusen/ Pintu, Wallpaper/ Wallcovering, Kaca anti panas, Curtain Wall, Keramik, Insect Screen.

- **Produk Elektrikal**

Merupakan jenis produk yang mengkonsumsi energi listrik yang digunakan sebagai elemen pendukung dari suatu bangunan. Produk dalam kategori ini diklaim dapat menurunkan konsumsi energi listrik pada tahap operasional bangunan. Material yang termasuk dalam kategori ini antara lain, Air Ducting, Air Conditioner, Air Ventilator, Lampu Bersensor, Smoke Detector, Water Heater, Elevator.

- **Material Plumbing**

Merupakan jenis material yang digunakan untuk mengalirkan air bersih/ kotor dalam suatu sirkulasi. Produk dalam kategori ini diklaim dapat menurunkan konsumsi energi listrik pada tahap operasional bangunan. Adapun yang termasuk dalam kategori ini antara lain, Closet, WC, Hand Flush, Pipa.
<table>
<thead>
<tr>
<th>No</th>
<th>Kategori</th>
<th>Nama Produk</th>
<th>Nama Produsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water Efficiency</td>
<td>Toilet CW840J</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eco Washer TCW07S</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CW801PJ/SW801JP/SW880JP</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEN40AWV500</td>
<td>PT. Surya Toto Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desjoyaux Pools</td>
<td>PT. Megavektor Adikarya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero Flush</td>
<td>PT. Innovation Tech. Solution</td>
</tr>
<tr>
<td>2</td>
<td>Site Protection</td>
<td>EnviplastA</td>
<td>PT. Inter Aneka Lestari Kimia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stas MU</td>
<td>PT. Cipta Mortar Utama</td>
</tr>
<tr>
<td>3</td>
<td>Recycle Content</td>
<td>Knauf (Sistem Plafon & Partisi Gypsum)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Heradesign)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Cleaneo Linear)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf Gypsumboard</td>
<td>Knauf</td>
</tr>
<tr>
<td>4</td>
<td>Indoor</td>
<td>Energy Recovery Ventilator Recoupaerator</td>
<td>Tawada Clean Tech</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stainless Steel Insect Screens</td>
<td>PT. Onna Prima Utama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roller Blind Fabrics</td>
<td>Knauf</td>
</tr>
<tr>
<td>No</td>
<td>Kategori</td>
<td>Nama Produk</td>
<td>Nama Produsen</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Interior</td>
<td>Vassa Dining Chair</td>
<td>PT. Vivere Multi Kreasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenlam Safeguardsplus anti bacterial compact lami</td>
<td>Greenlam Compact laminate greenlame Asia Pacific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenlam High Pressure Laminate</td>
<td>Greenlam Compact laminate greenlame Asia Pacific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Everyday colour beginigs</td>
<td>Goodrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harmonious Balance</td>
<td>Goodrich</td>
</tr>
<tr>
<td>6</td>
<td>Energy efficiency</td>
<td>Bata Ringan Primacon</td>
<td>PT. Cipta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Heradesign)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf (Cleaneo Linear)</td>
<td>Knauf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knauf Gypsumboard</td>
<td>Knauf</td>
</tr>
</tbody>
</table>
Lanjutan Tabel 5.1

<table>
<thead>
<tr>
<th>No</th>
<th>Kategori</th>
<th>Nama Produk</th>
<th>Nama Produsen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Architecture Material</td>
<td>Master seal</td>
<td>PT. BASF Indonesia</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Stealth 240SC-Anti Rayap</td>
<td>PT. BASF Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ucrete Series</td>
<td>PT. BASF Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iBrick Wall System</td>
<td>PT. Drymix Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodrich Wallcovering</td>
<td>Goodrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onduline, Genteng Onduvilla, Ondugreen</td>
<td>PT. Onduline Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b-panel</td>
<td>PT. Beton Elemindo Putra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nippon paint's green choice products</td>
<td>PT. Nipsea Paint and Chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lacobel-Varnished Glass</td>
<td>PT. Asahimas Flat Glass, Tbk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heatgard</td>
<td>PT. Inter Aneka Lestari Kimia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodrich Flooring</td>
<td>Goodrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alumunium Unitized Curtain WallUCW 125</td>
<td>PT. YKK AP Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forbo</td>
<td>PT. Trade Indo Utama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desso</td>
<td>PT. Trade Indo Utama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Habitat Pixell</td>
<td>PT. Saranagriya Lestari Keramik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aqua Parquet Lack APL-851</td>
<td>PT. Propan Raya</td>
</tr>
</tbody>
</table>

Sumber: www.greenlistingindonesia.com
Apabila material berkelanjutan berdasarkan green listing dihubungkan dengan kriteria material berkelanjutan akan diperoleh sebuah matrik yang dapat dilihat pada Tabel 5.2.

<table>
<thead>
<tr>
<th>Kriteria Green Material</th>
<th>Produk Recycle Content Material</th>
<th>Produk Indoor Environmental Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecobabel</td>
<td>Produk telah mendapatkan ecolabel dari Jerman</td>
<td>Produk telah mendapatkan ecolabel dari Amerika dan Singapura</td>
</tr>
<tr>
<td>Memanfaatkan material lokal</td>
<td>Produk tidak menggunakan material lokal karena semua bahan diproses di Jerman</td>
<td>Produk tidak menggunakan material lokal karena semua bahan diproses di Jerman</td>
</tr>
<tr>
<td>Memanfaatkan material daur ulang</td>
<td>Produk tidak menggunakan material daur ulang</td>
<td>Produk tidak menggunakan material daur ulang</td>
</tr>
<tr>
<td>Menggunakan energi yang terbarukan</td>
<td>Produsen selalu melakukan updating terhadap kebutuhan energi yang tidak menyebabkan pencemaran</td>
<td>Produsen selalu melakukan updating terhadap kebutuhan energi yang tidak menyebabkan pencemaran</td>
</tr>
<tr>
<td>Menggunakan teknologi ramah lingkungan</td>
<td>Dalam proses produksi teknologi ramah lingkungan menjadi skala prioritas</td>
<td>Dalam proses produksi teknologi ramah lingkungan menjadi skala prioritas</td>
</tr>
<tr>
<td>Bebas B3</td>
<td>Bahan baku yang digunakan bebas dari B3</td>
<td>Bahan baku yang digunakan bebas dari B3</td>
</tr>
<tr>
<td>Memberikan value dalam pengoperasian</td>
<td>Dalam pengoperasian tidak membutuhkan energi yang besar</td>
<td>Dalam pengoperasian tidak membutuhkan energi yang besar</td>
</tr>
<tr>
<td>Mengurangi dampak negatif terhadap lingkungan</td>
<td>Tidak memiliki dampak atau tidak mengandung bahan-bahan yang berbahaya bagi pengguna</td>
<td>Tidak memiliki dampak atau tidak mengandung bahan-bahan yang berbahaya bagi pengguna</td>
</tr>
</tbody>
</table>

Tabel 5.2 Potensi material berkelanjutan berdasarkan Green Listing

5.1.3. Baja sebagai Material Konstruksi Berkelanjutan

Baja merupakan salah satu material konstruksi yang strategis. Tingkat konsumsi baja suatu negara pada saat ini telah menjadi salah satu indikator dalam kemajuan negara tersebut. Semakin makmur suatu negara, yang ditunjukkan dengan nilai PDB per kapita, cenderung memiliki konsumsi baja yang semakin tinggi sebagaimana terlihat pada Tabel 5.3. Tingkat konsumsi baja perkapita Indonesia pada saat itu tercatat hanya sebesar 38,7 kg, berada dibawah konsumsi baja Philipina pada tahun 2008 sebesar 39,4 kg/kapita/tahun. Menurut Natsir, M., (2012) dengan asumsi pertumbuhan konsumsi baja di ketiga negara tersebut 5%/tahun, maka konsumsi baja rata-rata pada tahun 2025 diestimasikan sebesar 453 kg/kapita/tahun. Dengan demikian, jika ingin bersaing dengan ketiga negara tersebut, maka industri baja nasional perlu meningkatkan kapasitas produksinya sebesar 14%/tahun sejak saat ini, agar dapat memenuhi kebutuhan tersebut. Untuk mendorong pertumbuhan ekonomi di Indonesia, pemerintah telah merencanakan percepatan peningkatan investasi infrastruktur dalam beberapa tahun ke depan. Hal ini tertuang dalam Program Master Plan Percepatan dan

Sumber: Diolah berdasarkan hasil survey, 2013
Perluasan Pembangunan Ekonomi Indonesia (MP3EI), dimana di dalamnya terdapat alokasi dana yang sangat besar pada sektor infrastruktur.

Tabel 5.3. Konsumsi Baja di Negara Asia dan Australia Tahun 2008

<table>
<thead>
<tr>
<th>Negara</th>
<th>PDB Per Kapita</th>
<th>Konsumsi Baja (kg/kapita)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam</td>
<td>1.054</td>
<td>94,8</td>
</tr>
<tr>
<td>Philipina</td>
<td>1.847</td>
<td>39,4</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2.252</td>
<td>38,7</td>
</tr>
<tr>
<td>Thailand</td>
<td>3.937</td>
<td>203,1</td>
</tr>
<tr>
<td>Malaysia</td>
<td>7.014</td>
<td>297,7</td>
</tr>
<tr>
<td>Taiwan</td>
<td>17.013</td>
<td>693,3</td>
</tr>
<tr>
<td>Korea</td>
<td>19.076</td>
<td>1.222,4</td>
</tr>
<tr>
<td>Jepang</td>
<td>38.442</td>
<td>608,4</td>
</tr>
<tr>
<td>Singapura</td>
<td>38.723</td>
<td>775,1</td>
</tr>
<tr>
<td>Australia</td>
<td>47.430</td>
<td>367,1</td>
</tr>
</tbody>
</table>

Kebutuhan yang terus meningkat harus disertai dengan kualitas yang menjadi standar global. Salah satunya adalah material harus berorientasi pada sifat ramah lingkungan. Berdasarkan hasil survei kepada salah satu produsen baja di Indonesia, usaha untuk menghasilkan produk baja yang ramah lingkungan juga telah dilakukan. Pengendalian terhadap proses juga dilakukan oleh produsen tersebut melalui proses validasi yang dilakukan oleh kementerian lingkungan hidup. Proses validasi tersebut diolah dalam sebuah kompetisi tahunan. Bagi produsen atau industri yang layak akan mendapatkan reward sebagai industri hijau.

Keterkaitan kriteria green material dengan produsen baja dapat ditunjukkan pada Tabel 5.4.
Tabel 5.4. Potensi baja sebagai material berkelanjutan

<table>
<thead>
<tr>
<th>Kriteria Green Material</th>
<th>Baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecobabel</td>
<td>Produk yang berekolabel dilakukan dengan cara self declare</td>
</tr>
<tr>
<td>Memanfaatkan material lokal</td>
<td>Produk menggunakan material lokal meskipun komposisi tidak sebesar material impor</td>
</tr>
<tr>
<td>Memanfaatkan material daur ulang</td>
<td>Produk menggunakan material daur ulang</td>
</tr>
<tr>
<td>Menggunakan energi yang terbarukan</td>
<td>Produsen belum menggunakan kebutuhan energi karena alasan keterbatasan sumber daya</td>
</tr>
<tr>
<td>Menggunakan teknologi ramah lingkungan</td>
<td>Produsen belum menggunakan kebutuhan teknologi ramah lingkungan karena kurangnya dukungan finansial</td>
</tr>
<tr>
<td>Bebas B3</td>
<td>Bahan baku yang digunakan bebas dari B3 tetapi masih ada kendala terhadap definisi tingkat kandungan B3 di tingkat nasional</td>
</tr>
<tr>
<td>Memberikan value dalam pengoperasian</td>
<td>Dalam pengoperasian tidak membutuhkan energi yang besar</td>
</tr>
<tr>
<td>Mengurangi dampak negatif terhadap lingkungan</td>
<td>Tidak memiliki dampak atau tidak mengandung bahan-bahan yang berbahaya bagi pengguna</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari hasil survey, 2013

5.1.4. Semen sebagai Material Konstruksi Berkelanjutan

Semen juga merupakan material strategis yang kedua setelah baja. Semen merupakan hasil proses yang dilakukan industri. Proses ini tidak dapat dilepaskan dari peran pemasok sebelumnya seperti ketersediaan bahan mentah yang kemudian diolah dalam industri. Setelah diolah menjadi produk, masih diperlukan konsumen yang merupakan bagian hilir. Proses produksi semen dari bagian hulu dan hilir ini akan menjadi suatu mata rantai yang biasa disebut dengan rantai pasok karena di dalam kegiatan dari hulu dan hilir akan ada fungsi sebagai pemasok dan ada yang dipasok. Secara umum, rantai pasok industri semen yang dimulai dari hulu terdiri atas pemasok bahan mentah berupa batu kapur dan bahan tambah lainnya, serta pemasok bahan bakar.
Pada bagian hilir, yaitu konsumen semen dapat terdiri atas batching plant untuk keperluan ready mix, proyek konstruksi, kontraktor besar dan kecil atau swasta dan badan usaha milik negara, distributor, atau perseorangan. Pada satu sisi, semen dibutuhkan untuk mendukung proyek infrastruktur dan noninfrastruktur, tetapi pada sisi yang lain semen sebagai hasil proses industri tidak dapat dilepaskan sebagai industri yang menghasilkan CO\textsubscript{2} sebagai salah satu parameter yang digunakan untuk menuju konstruksi yang berkelanjutan. Parameter ini menjadi penting bagi semua produsen semen untuk menghasilkan produk yang ramah lingkungan. Korelasi parameter green material dengan produk semen sebagai material berkelanjutan dapat dilihat pada Tabel 5.5.

Tabel 5.5. Potensi semen sebagai material berkelanjutan

<table>
<thead>
<tr>
<th>Kriteria Green Material</th>
<th>Tipe Semen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Portland Cement</td>
</tr>
<tr>
<td>Ecobabel</td>
<td>Produk belum mendapatkan sertifikasi ekolabel</td>
</tr>
<tr>
<td>Memanfaatkan material lokal</td>
<td>Produk menggunakan material lokal terutama bahan baku yaitu batu kapur</td>
</tr>
<tr>
<td>Memanfaatkan material daur ulang</td>
<td>Produk tidak menggunakan material daur ulang</td>
</tr>
<tr>
<td>Menggunakan energi yang terbarukan</td>
<td>Produk belum menggunakan energi yang terbarukan</td>
</tr>
<tr>
<td>Menggunakan teknologi ramah lingkungan</td>
<td>Produk belum menggunakan teknologi ramah lingkungan</td>
</tr>
<tr>
<td>Bebas B3</td>
<td>Produk menggunakan bahan baku bebas B3 tetapi masih memiliki kendala terhadap penetapan kriteria tingkat kandungan B3</td>
</tr>
<tr>
<td>Memberikan value dalam pengoperasian</td>
<td>Tidak memberikan value dalam pengoperasiannya</td>
</tr>
<tr>
<td>Mengurangi dampak negatif terhadap lingkungan</td>
<td>Memberikan dampak terhadap masyarakat di sekitar produsen semen</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari hasil survey, 2013

5.2. Peralatan Konstruksi Berkelanjutan

Kategori kedua adalah peralatan konstruksi. Jenis peralatan yang diuraikan pada bagian ini diperoleh dari hasil survei ke beberapa perusahaan yang telah mengkalim bahwa peralatan mereka bersifat ramah lingkungan dan memberikan dampak negatif yang semimum mungkin pada lingkungan sekitar.

Peralatan konstruksi terbagi menjadi dua jenis antara lain,

- Alat Berat Konstruksi (Construction Vehicle)
Peralatan konstruksi pada bagian ini merupakan jenis peralatan yang digunakan untuk transportasi material, dan berbagai keperluan lainnya pada saat konstruksi. Penggunaan berbagai jenis teknologi ramah lingkungan telah diaplikasikan pada alat berat oleh berbagai produsen di Indonesia. Adapun yang termasuk ke dalam jenis alat berat konstruksi antara lain, Truk, Dozer, Backhoe, Tower Crane, Roller, dll.

- Peralatan Pendukung Konstruksi

Peralatan konstruksi pada bagian ini merupakan jenis peralatan yang penggunaannya dapat mengurangi jumlah waste (limbah sisa konstruksi) serta dapat digunakan berulang-ulang karena tidak menggunakan material kayu seperti biasa pada proses konstruksi. Adapun yang termasuk ke dalam jenis peralatan pendukung konstruksi antara lain, *scaffolding*, panel bekisting.

Demikian halnya dengan peralatan yang diperlukan di dalam proyek konstruksi. Bagi produsen alat berat juga dituntut untuk menyediakan alat berat yang dapat memenuhi kriteria sebagai green equipment. Adapun korelasi antara kriteria green equipment dengan produk alat berat yang mendukung konstruksi berkelanjutan dapat dilihat pada Tabel 5.6.

Tabel 5.6. Potensi alat berat sebagai pendukung konstruksi berkelanjutan

<table>
<thead>
<tr>
<th>Kriteria Green Equipment</th>
<th>Jenis Alat Berat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydraulic Excavator</td>
</tr>
<tr>
<td>Mesin berkadar emisi gas buang rendah</td>
<td>Produsen melakukan inovasi dengan memproduksu mesin yang beremisi gas buang rendah</td>
</tr>
<tr>
<td>Menggunakan teknologi hybrid</td>
<td>Teknologi hybrid diterapkan pada semua produk alat berat tetapi belum memiliki pasar karena ketersediaan sumber energi bio solar belum banyak di pasaran</td>
</tr>
<tr>
<td>Memiliki kemampuan untuk diremanufacturing</td>
<td>Mesin alat berat didesain untuk diremanufacturing sehingga mesin yang sudah beroperasi lebih dari 52.000 jam dapat digunakan kembali</td>
</tr>
<tr>
<td>Memiliki kandungan bahan daur ulang</td>
<td>Semua komponen memiliki kandungan bahan daur ulang</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari hasil survey, 2013
6.1. Supply Material Berkelanjutan

Seperti yang telah dijelaskan dalam bagian sebelumnya, saat ini industri konstruksi di Indonesia sedang menghadapi berbagai tantangan dalam menerapkan pasar konstruksi hijau. Salah satu tantangan tersebut adalah bagaimana menjamin ketersediaan pasokan material yang sesuai dengan prasyarat konstruksi hijau. Tantangan lainnya adalah bagaimana menciptakan suatu pasar komoditas yang menyediakan material-material yang ramah lingkungan.

6.1.1. Material Semen

Material semen merupakan salah satu material utama yang digunakan secara luas dihampir seluruh jenis bangunan konstruksi di manapun. Material semen terdiri atas klinker (material setengah jadi yang menjadi bahan baku utama dari semen), dan material tambahan (gipsum, silika, pzolan, dll) sesuai dengan jenis semen yang dihasilkan.

Proses Pembuatan Semen

Adapun proses pembuatan semen adalah sebagai berikut:

- Penggalian/Quarrying: Terdapat dua jenis material yang penting bagi produksi semen: yang pertama adalah yang kaya akan kapur atau material yang mengandung kapur (calcareous materials) seperti batu gamping, kapur, dll., dan yang kedua adalah yang kaya akan silika atau material mengandung tanah liat (argillaceous materials) seperti tanah liat. Batu gamping dan tanah liat dikeruk atau diledakkan dari penggalian dan kemudian diangkut ke alat penghancur.
- Penghancuran: Penghancur bertanggung jawab terhadap pengecilan ukuran primer bagi material yang digali.
- Pencampuran Awal: Material yang dihancurkan melewati alat analisis on-line untuk menentukan komposisi tumpukan bahan.
- Penghalusan dan Pencampuran Bahan Baku: Sebuah belt conveyor mengangkut tumpukan yang sudah dicampur pada tahap awal ke penampung, dimana perbandingan berat umpan disesuaikan dengan jenis klinker yang diproduksi. Material kemudian digiling sampai kehalusan yang diinginkan.
- Pembakaran dan Pendinginan Klinker: Campuran bahan baku yang sudah tercampur rata diumpankan ke pre-heater, yang merupakan alat penukar panas yang terdiri dari serangkaian siklon ketika terjadi perpindahan panas antara umpan campuran bahan baku dengan gas panas dari kiln yang berlawanan arah. Kalsinasi parsial terjadi pada pre-heater ini dan berlanjut dalam kiln, ketika bahan baku berubah menjadi agak cair dengan sifat seperti semen. Pada kiln yang bersuatu 1350-1400°C, bahan berubah menjadi bongkahan padat berukuran kecil yang dikenal dengan sebutan klinker, kemudian dialirkan ke pendingin klinker, tempat udara pendingin akan menurunkan suhu klinker hingga mencapai 100°C.
Gambar 6.1 Proses Pembuatan Semen
Sumber: Wikipedia.com

Tipe-Tipe Produk Semen

Berikut adalah tipe-tipe semen yang diproduksi oleh produsen semen di Indonesia:

- Portland Cement Tipe I (SNI 15-2049-2004)
- Portland Cement Tipe II (SNI 15-2049-2004)
- Portland Cement Tipe III (SNI 15-2049-2004)
- Portland Cement Tipe IV (SNI 15-2049-2004)
Kajian Rantai Pasok Material dan Peralatan Konstruksi
Dalam Mendukung Investasi di Bidang Konstruksi Berkelanjutan

Perusahaan Semen Di Indonesia

Seluruh perusahaan pabrik semen di Indonesia tergabung kedalam Asosiasi Semen Indonesia (ASI) yang setiap tahunnya menyediakan data statistik produksi, konsumsi, dan ekspor/ impor semen yang dioperasikan para anggotanya. Saat ini jumlah produsen semen di Indonesia berjumlah 9 buah perusahaan, namun Semen Padang, Semen Gresik, dan Semen Tonasa tergabung menjadi Semen Gresik Group/ Semen Indonesia, dengan rincian sebagai berikut:

<table>
<thead>
<tr>
<th>Perusahaan</th>
<th>Tahun Operasi</th>
<th>Kapasitas Produksi Klinker (*000 ton) 2012</th>
<th>Kapasitas Produksi Semen (*000 ton) 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT. Semen Padang (SP)</td>
<td>1910</td>
<td>5610</td>
<td>6300</td>
</tr>
<tr>
<td>PT. Semen Gresik (SG)</td>
<td>1957</td>
<td>9100</td>
<td>11300</td>
</tr>
<tr>
<td>PT. Semen Tonasa (ST)</td>
<td>1968</td>
<td>6270</td>
<td>6550</td>
</tr>
<tr>
<td>PT. Holcim Indonesia (HI)</td>
<td>1975</td>
<td>6400</td>
<td>8700</td>
</tr>
<tr>
<td>PT. Indocement Tunggal Prakarsa (ITP)</td>
<td>1975</td>
<td>15600</td>
<td>18600</td>
</tr>
<tr>
<td>PT. Semen Baturaja (SB)</td>
<td>1980</td>
<td>1200</td>
<td>1250</td>
</tr>
<tr>
<td>PT. Lafarge Cement Indonesia (LCI)</td>
<td>1982</td>
<td>1200</td>
<td>1600</td>
</tr>
<tr>
<td>PT. Semen Kupang (SK)</td>
<td>1984</td>
<td>300</td>
<td>570</td>
</tr>
</tbody>
</table>

Tabel 6.1 Kapasitas Produksi Produsen Semen Indonesia 2012
Sumber: Publikasi Asosiasi Semen Indonesia, 2012
PT. Semen Bosowa Maros (SBM)	1999	1800	3000
Total Produksi | 47480 | 57870

Gambar 6.2 Lokasi Produsen Semen di Indonesia
Sumber: Wikipedia.com

Berdasarkan gambar 6.2, dapat diambil kesimpulan bahwa sejumlah besar produsen semen di Indonesia masih terpusat di pulau Jawa dan sebagian Sumatera. Untuk di bagian Indonesia Timur, pasokan semen hanya berasal dari Semen Tonasa yang berlokasi di daerah Sulawesi Selatan. Adapun Semen Kupang jumlah produksinya
paling kecil diantara para produsen semen (tabel 6.1). Ketimpangan suplai pasokan semen khususnya untuk daerah timur Indonesia menimbulkan berbagai macam permasalahan.

Kapasitas Supply

Tabel 6.2 Kapasitas Produksi dan Jumlah Produksi Semen Indonesia 2012

Sumber: Publikasi Asosiasi Semen Indonesia, 2012

<table>
<thead>
<tr>
<th>Perusahaan</th>
<th>Utilisasi (%)</th>
<th>Kapasitas (*000 ton)</th>
<th>Jumlah (*000 ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT. Semen Padang (SP)</td>
<td>103</td>
<td>6300</td>
<td>6479</td>
</tr>
<tr>
<td>PT. Semen Gresik (SG)</td>
<td>102</td>
<td>11300</td>
<td>11576</td>
</tr>
<tr>
<td>PT. Semen Tonasa (ST)</td>
<td>72</td>
<td>6550</td>
<td>4747</td>
</tr>
<tr>
<td>PT. Holcim Indonesia (HI)</td>
<td>92</td>
<td>8700</td>
<td>8038</td>
</tr>
<tr>
<td>PT. Indocement Tunggal Prakarsa (ITP)</td>
<td>95</td>
<td>18600</td>
<td>17688</td>
</tr>
<tr>
<td>PT. Semen Baturaja (SB)</td>
<td>99</td>
<td>1250</td>
<td>1234</td>
</tr>
<tr>
<td>PT. Lafarge Cement Indonesia (LCI)</td>
<td>83</td>
<td>1600</td>
<td>1331</td>
</tr>
<tr>
<td>PT. Semen Kupang (SK)</td>
<td>0</td>
<td>570</td>
<td>0</td>
</tr>
<tr>
<td>PT. Semen Bosowa Maros (SBM)</td>
<td>72</td>
<td>3000</td>
<td>2157</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>57870</td>
<td>53253</td>
</tr>
</tbody>
</table>
Berikut adalah sebaran suplai semen di Indonesia:

![Gambar 6.3 Structure Channel Rantai Pasok Semen](image)

Sumber: data olahan pribadi

Berdasarkan gambar 6.3 di atas, dapat dilihat bahwa lebih dari 50% produksi semen di Indonesia terdapat di pulau Jawa. Sedangkan untuk daerah Timur Indonesia dapat dikatakan tidak ada pabrik semen. Dengan menumpuknya pasokan semen di pulau Jawa, hal ini menimbulkan masalah lain terutama dalam masalah harga material khususnya untuk di daerah luar pulau Jawa. Selain itu waktu dan lamanya pengiriman material juga menjadi masalah lain yang turut mempengaruhi harga material semen di daerah luar pulau Jawa.

Rantai Pasok Material Semen

Bahan baku utama semen yaitu batu kapur, diperoleh dengan cara melakukukan penambangan/ penggalian. Selanjutnya batu kapur tersebut diproses sedemikian rupa hingga menghasilkan bahan setengah jadi semen yang disebut klinker. Untuk diolah menjadi semen, klinker tersebut diproses lagi dengan mencampurkan berbagai bahan kimiawi sesuai dengan jenis semen yang akan diproduksi.

Setelah diproduksi, semen tersebut dipackaging sedemikian rupa dan disimpan ke dalam storage/ gudang yang kedap air hingga semen tidak terjadi kontak dengan air.
Semen kemudian dijual ke pada distributor dalam volume besar, lalu dari distributor semen dapat juga dijual ke pedagang eceran dalam volume kecil. Dari pedagang kecil ini masyarakat dapat memperoleh semen.

Gambar 6.4 *Structure Channel Rantai Pasok Semen*
Sumber: data olahan pribadi

6.1.2. Material Baja

Material baja merupakan salah satu material utama yang digunakan secara luas dihampir seluruh jenis bangunan konstruksi di manapun. Material ini memiliki karakteristik yang berbeda dengan semen, dengan kemampuannya menahan tegangan tarik yang tinggi, dan sifat homogenitas materialnya lebih baik ketimbang semen.

Proses Pembuatan Baja

Adapun proses pembuatan baja dapat dilihat pada gambar 6.5. Secara umum, proses dari pembuatan baja dimulai dari bahan baku yang terdiri dari biji besi dan scrap (besi bekas). Sumber dari bahan baku baik biji besi dan scrap berasal dari impor dan lokal. Menurut hasil survei yang dilakukan komposisi antara impor dan lokal adalah 70% berasal dari impor dan 30% dari lokal. Para pelaku dari bahan baku ini biasanya dilakukan oleh para trader atau pengepul kemudian akan didistribusikan ke produsen. Tahap berikutnya adalah proses peleburan dari biji besi atau scrap akan diolah menjadi sponge iron.
Hasil dari sponge iron dapat dibagi menjadi 2 yaitu long product dan slab product. Bloom dan billet merupakan hasil dari long product sebelum diolah menjadi bahan jadi seperti baja profil, baja tulangan dan steel wire. Untuk memproduksi baja profil, baja tulangan dan steel wire, pertama-tama bloom dan billet akan diolah ke dalam suatu proses yang disebut dengan Hot Rolling Mill. Adapun yang dimaksud dengan rolling adalah proses reduksi pengurangan luas penampang atau pengurangan ketebalan atau proses pembentukan logam melalui deformasi dengan melewatin benda kerja pada sepasang roll yang berputar dengan arah berlawanan.

HRC selanjutnya dapat diproses lagi untuk diolah menjadi Cold Rolled Coil (CRC) yang merupakan bahan dasar dari pembuatan rangka baja ringan, genteng metal, kaleng, baja lebaran untuk otomotif, dll.

Tipe-Tipe Produk Baja

Jenis-jenis produk baja yang digunakan untuk keperluan konstruksi terbagi menjadi 7 buah komoditas utama yang terdiri atas:

- Baja Tulangan
- Baja Profil
• Baja Lembaran
• Baja Kawat
• Baja Pipa
• Baja Alat Berat
• Baja Ringan
Gambar 6.5 Diagram Alir Pengolahan Baja
Sumber: Diolah dari hasil survei Kajian Rantai Pasok Baja Konstruksi, 2012
Perusahaan Baja di Indonesia

Perusahaan baja di Indonesia jumlahnya cukup banyak dan terbagi menjadi beberapa jenis kategori perusahaan yang disesuaikan dengan produk yang diolahnya. Keberagaman ini dikarenakan proses yang cukup rumit dalam memproduksi material baja dan hampir seluruh pabrik baja di Indonesia hanya mengerjakan sebagian dari proses keseluruhan untuk menghasilkan material baja.

<table>
<thead>
<tr>
<th>Industri Hulu</th>
<th>Industri Antara 1</th>
<th>Industri Antara 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertambangan</td>
<td>Pembuatan Baja Kasar</td>
<td>Pembuatan Semi Finished Product</td>
</tr>
<tr>
<td>Biji Besi</td>
<td>Ingot</td>
<td>HRC/P/S</td>
</tr>
<tr>
<td>Ferro Nickel</td>
<td>Slab</td>
<td>CRC/P/S</td>
</tr>
<tr>
<td>Besi Spons</td>
<td>Billet</td>
<td>Plat Baja</td>
</tr>
<tr>
<td>Pig Iron</td>
<td>Bloom</td>
<td>Wire Rod</td>
</tr>
<tr>
<td>Scrap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industri Hilir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembuatan Finished Flat Product</td>
</tr>
<tr>
<td>BULS</td>
</tr>
</tbody>
</table>

Gambar 6.6 Industri Baja Nasional
Sumber: Road Map Pengembangan Klaster Industri Prioritas Basis Industri Manufaktur Tahun 2010 - 2014

Industri baja nasional dikelompokkan menjadi Industri Hulu, Industri Antara 1, Industri Antara 2, dan Industri Hilir (gambar 6.6). Yang termasuk dalam industri hulu adalah pertambangan, dan penyediaan bahan baku. Industri antara 1 adalah industri pembuatan baja kasar (crude steel) sementara Industri antara 2 adalah industri pembuatan produk setengah jadi (semi finished product). Selanjutnya Industri hilir terdiri atas kelompok pembuatan produk baja lembaran (flat product), dan kelompok pembuatan produk baja lonjor (long product). Saat ini industri hilir yang khusus mengolah bijih besi hanya ada satu perusahaan di Indonesia. Baja kasar (crude steel) merupakan hasil pengolahan bijih besi dan besi rongsokan (scrap). Baja kasar selanjutnya akan diolah menjadi baja lembaran dan baja lonjoran. Baja lembaran akan diolah menjadi HRC (Hot Rolled Coil) dan HRP (Hot Rolled Plate), sedangkan baja lonjoran akan diolah menjadi baja profil, baja tulangan, dan baja kawat.

Produsen Semi Finished Produk, jenis perusahaan ini memproduksi barang setengah jadi yang berupa HRC, HRP, wire rod, dll yang menjadi bahan baku untuk produsen baja setelahnya. Jumlah produsen baja di bagian ini tidak banyak.

Fabrikator, jenis perusahaan ini termasuk dalam kategori industri hilir yang mengolah bahan baku bloom, billet, slab, dan semi finished produk baja untuk memproduksi 7 buah komoditas baja konstruksi. Jenis perusahaan di kategori ini jumlahnya sangat banyak, dan kapasitas produksinya sangat beragam, mulai dari fabrikan baja dengan kapasitas besar dan kecil, semuanya ada.

Sektor ini memainkan peran utama dalam memasok bahan baku vital untuk pembangunan di berbagai bidang mulai dari penyediaan infrastruktur (gedung, jalan, jembatan, jaringan listrik dan komunikasi), produksi barang modal (mesin pabrik serta material pendukung, dan suku cadangnya), alat transportasi (kapal laut, kereta api dan relnya, serta otomotif), hingga persenjataan. Atas perannya yang sangat penting tersebut, keberadaan industri baja menjadi sangat strategis untuk kemakmuran suatu negara (BKPM, 2011). Peran pemerintah untuk meningkatkan industri baja nasional
tercermin dari data kementrian perindustrian yang mencatat persentase pertumbuhan subsektor Logam Dasar Besi & Baja sebesar 13,06 % pada tahun 2011.

Berikut adalah peta sebaran produsen komoditas baja konstruksi:

![Gambar 6.7 Peta Sebaran Komoditas Baja Konstruksi Nasional](image)

Kapasitas Supply

Kapasitas produksi total para produsen baja di Indonesia untuk setiap jenis komoditas baja yang umumnya digunakan di sektor konstruksi direktori IISIA (2012) dapat dilihat pada Tabel 6.3.

<table>
<thead>
<tr>
<th>No</th>
<th>Komoditas</th>
<th>Jenis Produk</th>
<th>Jumlah Perusahaan</th>
<th>Kapasitas Produksi Ton/tahun</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Profile</td>
<td>Heavy Profile, Channel, Angle, T-Beam</td>
<td>22</td>
<td>1,730,900</td>
</tr>
<tr>
<td>2</td>
<td>Bars</td>
<td>Deformed and Round Bars</td>
<td>30</td>
<td>3,668,100</td>
</tr>
<tr>
<td>3</td>
<td>Hot Rolled Coil</td>
<td>Steel Plate, Plate untuk Alat Berat</td>
<td>6</td>
<td>3,710,000</td>
</tr>
<tr>
<td>4</td>
<td>Cold Rolled Coil</td>
<td>Light Steel Frame</td>
<td>5</td>
<td>1,690,000</td>
</tr>
<tr>
<td>5</td>
<td>Steel Wire</td>
<td>Wire Rod</td>
<td>7</td>
<td>2,295,000</td>
</tr>
<tr>
<td>6</td>
<td>Steel Pipe</td>
<td>Seamless Pipe, Welded Spiral Pipe</td>
<td>20</td>
<td>1,912,160</td>
</tr>
<tr>
<td></td>
<td>Total Produksi</td>
<td></td>
<td></td>
<td>15,006,160</td>
</tr>
</tbody>
</table>

Sumber: IISIA, 2012

Berikut adalah peta sebaran supply baja nasional:

Gambar 6.8 Peta Sebaran Pasokan Baja Konstruksi Nasional

Sumber: Direktori IISIA (2012)

Berdasarkan Gambar 6.8 di atas, dapat dilihat bahwa jumlah pasokan baja konstruksi hampir seluruhnya berada di pulau Jawa, dan sebagian kecil di pulau Sumatra (daerah Sumatra utara dan lampung). Dengan menumpuknya pasokan baja di pulau jawa, hal ini menimbulkan masalah lain terutama dalam masalah harga material khususnya...
untuk di daerah luar pulau Jawa. Selain itu waktu dan lamanya pengiriman material juga menjadi masalah lain yang turut mempengaruhi harga material baja konstruksi di daerah luar pulau Jawa.

6.1.3. Material Aspal

Aspal merupakan salah satu material utama yang digunakan sebagai lapisan penutup dari jalan raya. Material ini bersifat melekat (adhesive), berwarna hitam kecoklatan, tahan terhadap air, dan bersifat visoelastis. Aspal yang juga disebut bitumen merupakan bahan pengikat pada campuran beraspal yang dimanfaatkan sebagai lapis permukaan pada perkerasan lentur.

Hasil penelitian menunjukkan bahwa teknologi pengolahan asbuton yang selama ini digunakan (proses mekanik) adalah penyebab turunnya kadar aspal dalam asbuton yang selanjutnya menurunkan kinerja asbuton (Purnomo, 2013). Sejumlah penelitian telah dilakukan untuk meningkatkan kadar aspal dalam asbuton yaitu dengan menggunakan teknologi pemurnian ekstraksi kandungan aspal dalam batu kapur.

Proses Pembuatan Aspal

Adapun proses pembuatan aspal minyak adalah sebagai berikut:

Dalam proses pembuatan aspal minyak bumi, mula-mula dari suatu sumur minyak yang masih bercampur pasir dan air. Minyak bumi disedot keluar, ditempatkan dalam tanki lapanga, kemudian dialirkan ke gardu pompa untuk selanjutnya dipompa ke dalam tangki pengilangan.

Setelah bejana pipa dan bejana lain dengan pemanasan pada suhu tertentu dalam proses yang kemudian dihasilkan destilat ringan, destilat sedang, destilat berat dan destilat residu, dari destilat-destilat ini dalam suatu prosesing dihasilkan :

- Bensin, pelarut ringan
- Minyak tanah, minyak bakar ringan
- Minyak diesel
- Minyak pelumas

Gambar 6.9 Proses Pembuatan Aspal Minyak
Sumber: Wikipedia

Adapun proses pembuatan aspal buton dengan proses mekanikadalah sebagai berikut:

Asbuton yang berbentuk batuan kapur hasil penambangan pertama-tama dipanaskan hingga suhu 90⁰C hingga kering. Saat pemanasan sedang berlangsung uap air menguap dan hidrokarbon fraksi ringan akan terbakar, sehingga batuan kapur akan terurai secara otomatis karena kohesi/adhesi berkurang. Selanjutnya batuan asbuton tadi digiling sehingga menjadi halus, dan masuk ke proses penyaringan. Hasil ayakan tersebut selanjutnya ditumpuk dan dimasukkan ke dalam kantong-kantong. Kadar aspal asbuton yang dihasilkan melalui proses ini mencapai 25-30%.
Adapun proses pembuatan aspal buton dengan proses pemurnian ekstraksi adalah sebagai berikut: proses pemurnian ekstraksi merupakan teknologi yang masih tergolong baru dalam memisahkan aspal dari batuan kapur. Asbuton yang berbentuk batuan hasil penambangan pertama-tama dilarutkan pada larutan asam sulfat. Batu kapur yang mengandung asbuton tersebut akan larut dalam reaksi kimia dan menghasilkan asbuton, gipsum, dan gas karbon dioksida untuk setiap pencampurannya. Kadar aspal dalam asbuton yang dihasilkan melalui proses ini mencapai 60%.

Sebagai perbandingan, aspal terbaik di dunia saat ini, aspal TLA yang berasal dari Trinidad memiliki kadar aspal yang mencapai 52-55%. Dengan kata lain asbuton merupakan salah satu aspal terbaik di dunia yang hanya ada di Indonesia. Karena teknologi pemisahan antara batu kapur dan aspal yang selama ini digunakan untuk memproduksi asbuton belum tepat menyebabkan aspal asbuton yang saat ini beredar memiliki kinerja yang lebih buruk ketimbang aspal minyak.

Tipe-Tipe Produk Aspal

Di Indonesia saat ini aspal yang digunakan ada 2 jenis, yaitu aspal minyak dan aspal buton (asbuton). Aspal minyak dihasilkan dari hasil penyulingan minyak bumi, sedangkan aspal buton diperoleh dari hasil tambang pada batuan kapur yang di dalam rongganya terkandung kandungan aspal alam.

Pada umumnya aspal yang digunakan oleh kontraktor dan Binamarga sebagai pihak yang mengerjakan pekerjaan jalan raya berasal dari jenis aspal minyak. Adapun penggunaan aspal buton hanya 0,5% dari penggunaan aspal di Indonesia. Beberapa kontroversi muncul yang disebabkan oleh keunggulan dari asbuton ternyata tidak sesuai dengan apa yang terjadi dilapangan. Kinerja asbuton selalu lebih buruk dari aspal minyak. Hal tersebut menyebabkan penggunaan asbuton tidak banyak dan sangat sedikit. Dengan menggunakan teknologi pemrosesan asbuton yang menggunakan proses pemurnian ekstraksi, diharapkan Indonesia dapat mengolah sumberdaya aspalnya lebih baik untuk kepentingan masyarakat.
Tipe produk aspal terbaru adalah Asbuton Rubber yang merupakan campuran dari asbuton hasil pemurnian ekstraksi, crumb rubber, dan aspal minyak. Aspal ini merupakan jenis aspal terbaik yang menggunakan bahan bangunan yang berkelanjutan (rubber = bubuk ban bekas), proses pembuatannya mengkonsumsi energi lebih sedikit, ramah lingkungan, dan gas buangan yang diciptakan dapat dimanfaatkan untuk dijadikan dry ice.

Perusahaan Aspal di Indonesia

Perusahaan aspal minyak di Indonesia saat ini adalah PT. Pertamina, sedangkan perusahaan pengelola aspal buton saat ini berjumlah 6 buah perusahaan yang semuanya berlokasi di daerah kepulauan Buton, Sulawesi Tenggara.

Kapasitas Supply

Berdasarkan data yang diperoleh, kapasitas supply aspal dan konsumsi aspal di Indonesia adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Uraian</th>
<th>2010 (*000 ton)</th>
<th>2011 (*000 ton)</th>
<th>2012 (*000 ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penjualan Pertamina</td>
<td>404</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>Import</td>
<td>240</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Aspal Buton</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Total Pasokan</td>
<td>674</td>
<td>890</td>
<td>890</td>
</tr>
<tr>
<td>Total Konsumsi</td>
<td>1250</td>
<td>1350</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Suraji dkk, 2012

Pada tahun 2011, PT Pertamina merencanakan akan memasok material aspal sebesar 650 ribu ton dengan rincian 360 ribu ton dari Refinery Unit IV Cilacap, 180 ribu ton dari pabrik Aspal Gresik, dan 110 ribu ton impor melalui pihak ke tiga. Selain itu pasokan aspal buton yang dilakukan oleh sejumlah pabrik di daerah Buton direncanakan akan menyuplai sekitar 40 ribu ton/ tahun.
6.2. Supply material berkelanjutan

Dalam sebuah rantai pasok, dibutuhkan keseimbangan antara jumlah kebutuhan produk (demand) dengan jumlah ketersediaan produk (supply), tidak terkecuali dalam rantai pasok alat berat. Menurut Asosiasi Industri Alat Berat Indonesia (HINABI), produsen peralatan konstruksi telah berupaya membuat alat berat produk lokal dan ramah lingkungan. Namun, data kebutuhan masih belum jelas, sehingga belum menjadi motivasi bagi rantai pasok untuk mendukungnya (Abduh, 2013).

Gambar 6.10 Peta Sebaran Pasokan Aspal Nasional
Sumber: Pusbin SDI (2012)
Ketika dikaitkan dengan konstruksi hijau, kontraktor sebagai pengguna harus menggunakan alat-alat tersebut dengan perencanaan dan strategi yang matang agar dapat mengatur energi yang digunakan sedemikian rupa sehingga meminimalisasi pencemaran lingkungan yang diakibatkan gas buang.

Kapasitas Supply

Secara spesifik memang belum tersedia data dari masing-masing jenis alat berat. Namun berdasarkan data yang diperoleh, kapasitas supply dan demand dari alat berat dapat dilihat pada Tabel 6.5.

Tabel 6.5. Supply dan demand peralatan konstruksi di Indonesia

<table>
<thead>
<tr>
<th>No</th>
<th>Tahun</th>
<th>Supply [Unit]</th>
<th>Demand [Unit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010</td>
<td>4,691</td>
<td>12,000</td>
</tr>
<tr>
<td>2</td>
<td>2011</td>
<td>7,353</td>
<td>15,000</td>
</tr>
<tr>
<td>3</td>
<td>2012</td>
<td>7,947</td>
<td>13,000</td>
</tr>
</tbody>
</table>

7.1. Kesimpulan

Berdasarkan uraian dari bagian-bagian sebelumnya dapat disimpulkan sebagai berikut:

a. Definisi dan Kriteria Material dan Peralatan yang berkelanjutan

- Definisi material berkelanjutan yang ada, masih belum sepenuhnya mewakili variasi claim material yang ramah lingkungan beserta kriterianya begitu pula dengan peralatan yang berkelanjutan

- Material strategis seperti semen, aspal dan baja masih belum sepenuhnya memenuhi kriteria berkelanjutan tetapi sudah diupayakan

- Material yang tidak strategis terutama untuk material green building yang terdapat di Green Listing sudah mulai ada dan telah digunakan, meskipun telah ada dan telah digunakan tetapi belum memenuhi material berkelanjutan

b. Rantai Pasok Material dan Peralatan yang berkelanjutan

- Rantai pasok pada material dan peralatan yang berkelanjutan belum terlihat

- Rantai pasok material strategis berkelanjutan sama dengan rantai pasok material strategis yang biasa

- Rantai pasok yang tidak strategis, yang terdapat pada Green Listing dikuasai oleh sebagian kecil supplier dalam jumlah yang sedikit dan tertentu
- Data supply terkait dengan material berkelanjutan belum tersedia dengan baik untuk memberikan alternatif penggunaan material berkelanjutan pada masa yang akan datang

- Demand tidak ada juga data kebutuhan material berkelanjutan baik dari definisi maupun jumlah

c. Keseimbangan Supply dan Demand Material dan Peralatan yang Berkelanjutan

- Data supply terkait dengan material dan peralatan yang berkelanjutan belum tersedia dengan baik di dalam upaya untuk memberikan alternatif penggunaan material dan peralatan yang berkelanjutan pada masa yang akan datang

- Tidak tersedianya data demand terhadap kebutuhan material dan peralatan yang berkelanjutan baik dari definisi maupun jumlah

- Regulasi yang da terkait dengan MK ada yaitu terkait ekolabel

d. Regulasi terhadap Material dan Peralatan yang Berkelanjutan

- Regulasi yang terkait dengan material dan peralatan yang berkelanjutan sudah ada yaitu yang terkait ekolabel, dan penggunaan produk dalam negeri dan ramah lingkungan namun efektifitas implementasi belum memadai untuk di bidang konstruksi yang berkelanjutan

7.2. Usulan kebijakan

Beberapa kebijakan yang dapat diusulkan terdiri dari:

- Perlu ada pendefinisian material dan peralatan yang berkelanjutan untuk konstruksi yang terdiri dari bulk material, material standar pabrik dan material yang dipabrikasi beserta kriteria nya masing-masing

- Mengkomunikasikan dan mengkoordinasikan dengan kementerian terkait seperti kementerian perindustrian, kementerian perdagangan dan kementerian energi dan sumber daya mineral agar dapat diterapkan dalam ekolabel
• Menyebarluaskan informasi material-material strategis yang telah memenuhi kriteria material berkelanjutan dan mendukung pencapaian kriteria lainnya
• Menetapkan besaran tingkat kandungan dalam negeri (TKDN) bagi material dan peralatan yang digunakan dalam pelaksanaan konstruksi
• Mendukung penggunaan material atau produk yang tidak strategis untuk dapat memenuhi material berkelanjutan yang lainnya
• Kementrian PU harus menetapkan konsep konstruksi berkelanjutan sebagai kebijakan nasional kepada para penyedia dan pengguna jasa konstruksi
Kajian Rantai Pasok Material dan Peralatan Konstruksi

Laporan Akhir

Dalam Mendukung Investasi di Bidang Konstruksi Berkelanjutan